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FOREWORD

Contract F49620-83-C-0118 entitled "Coupling Linearized Far-Field Boundary Conditions with Non-
linear Near-Field Solutions in Transonic Flow" was sponsored by the Air Force Office of Scientific Re- 0
search. The objective of this contract was to develop an efficient procedure for calculating pressure
distributions and generalized forces in unsteady transonic flow for use in the evaluation of the flutter char-
acteristics of aircraft.

Participants at the Boeing Commercial Aircraft Company include: Dr. Richard Ensminger, program
manager; William S. Rowe, principal investigator; Dr. F. Edward Ehlers, and Warren H. Weatherill; all
of the Flutter Research Group of the Structures Technology Department, Research and Development; and
Dr. Roger Grimes of the Boeing Computer Services Company. The program managir for AFOSR was
Dr. Anthony Amos of the Directorate of Aerospace Sciences.

This report describes the theoretical developments and validation studies accomplished during the
course of the contract. 0
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1.0 INTRODUCTION

Historically, flutter analysis of three-dimensional airplane configurations has been limited to the
linearized (nonshock) flow regime where solutions are obtained for a relatively small number of
unknowns. Unsteady loadings used in linearized flutter predictions are usually obtained by coupling
assumed pressure distributions with a linearized kernel function to match the lifting surface
normalwash boundary conditions. The number of unknowns is limited to the number of assumed
pressure distributions that are distributed in a continuous fashion or applied as localized panel loadings
over the lifting surfaces. Unsteady loadings obtained using panel methods (Doublet-Lattice or SOUSSA)
usually limit the number of unknowns to some value that is less than 1000, even for a complicated 3D
configuration. The number of unknowns to be evaluated in analysis using continuous pressure
distributions is usually an order of magnitude less than that required in panel methods. That is, the
number of unknowns is less than 100 when continuous pressures are used.

Transonic flutter predictions of some high aspect ratio wings have been successfully accomplished
by applying experimental modification factors to the aerodynamic coefficients of linearized theory.
Again, the number of unknowns to be evaluated is relatively small, and this problem size can be easily
accepted on the relatively small core computers in use today. Transonic flutter predictions are needed
early in the design stage to provide guidance for improving and validating airplane performance. It has
been demonstrated that some high performance supercritical airfoils have severe flutter characteristics
that need to be identified early in the design stage so that proper design changes can be applied to provide
a stable flight system. It is nearly impossible to accurately represent unsteady surface pressures that
contain an oscillating shock by means of a linear combination of assumed surface pressure distributions.
Shocks that develop in transonic flows are not restricted to a localized region of the surface but extend out
into the flow field away from the lifting surface and affect the entire flow field. Consequently, the velocity
flow field around an airfoil having an embedded shock needs to be determined by a means that is more
powerful than that used in nonshock flow analyses. A method that has proven successful in predictingO the velocity field around an airfoil having attached shocks is one that determines the spatial variation of
the velocity field from simultaneous solutions of the nonlinear differential equation evaluated at the
intersections of a three-dimensional grid network that encompasses the airfoil. The number of unknowns
to be evaluated in the 3D grid network may easily range up to 100,000 unknowns even for an analysis of
an isolated lifting surface. The large number of unknowns taxes the limitations of present large core
computers (such as the CRAY) when used in predicting unsteady loadings on isolated 3D surfaces.
Consequently, unsteady loadings on complete 3D airplane configurations in unsteady transonic flow
conditions must be deferred until extremelv large core computers are available in the future unless
procedural modifications can be developed and applied to substantially reduce the number of solution
unknowns.

l• E
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2.0 NOMENCLATURE

a Streamwise dimension of mesh region

b Root semichord of wing or semichord of airfoil

CP Local pressure coefficient

f(x,y,t) Instantaneous wing shape defined by zo = df(x,yt)

f. Undisturbed wing or airfoil shape

Unsteady contribution to wing or airfoil shape

ij,k x,yz subscripts and indices for points in the mesh

* V-

K Transonic parameter, (1 - M2)/(M2 F)

M Freestream Mach number

I'm Mesh point indices

U. Freestream velocity

t Time in units of b/U o

x,,y.,z. Dimensionless physical coordinates

x',y',z' Variables of integration

Y Ratio of specific heats for air

aCp Jump in pressure coefficient

Ap1  Jump in cpo at plane of wing or vortex wake

Acpt Jump in pi, at wing trailing edge

6 Thickness ratio

2



2.0 NOMENCLATURE (Concluded)

A, Cw( - MI)

O(x,y) Source distribution over mesh boundary

P Complete, scaled perturbation velocity potential

90 Steady scaled perturbation velocity potential

91l Unsteady scaled perturbation velocity potential

e ll, Reduced frequency

tFA
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3.0 BACKGROUND INVESTIGATION

Given the difficulties resulting from the large number of unknowns required by current finite
S difference solution procedures, it is of interest to examine techniques for reducing the number of

solution unknowns.

Numerical studies for this report began by using an existing finite difference computer program for
unsteady transonic two-dimensional flow known as OPTRAN2 (ref. 1). The equations for OPTRAN2 are
derived by simplifying the full time-dependent potential equations by assuming small disturbances and
then separating the potential into steady and unsteady parts. The equation for the steady potential at
high subsonic Mach numbers is the well-known nonlinear transonic equation. The equation for the
unsteady potential, after assuming simple harmonic motion, is linear but with spatially varying coeffi-
cients which are functions of the steady potential. Shock motions are included as small motions about
the steady-state location. Solutions are obtained either by direct solution or, for a limited range of Mach
numbers and reduced frequency, by relaxation methods.

Unsteady loading predictions obtained from OPTRAN2 compare favorably with predictions ob-
tained from other transonic computer programs such as the results of XTRAN2 (ref. 2), a "time-
integration" procedure, as illustrated in Figure 1.

Results of one of the numerical excursions are shown in Figure 2, which presents a comparison of
the velocity potential spatial variation above and below the wing plane (at the midchord station) for a
flat plate and a NACA 64A010 airfoil section. The potential discontinuity across the finite thickness
airfoil is greater than that obtained for the zero thickness airfoil. Spatial characteristics are quite
similar at small distances away from the mean planes. A similar trend may also be observed for the
spatial variation of the velocity potentials of the MBB-A3 airfoil section that is shown in Figure 3.

In both comparisons, the differences between potentials of finite thickness and zero thickness air-
foils appear to be significant only in localized regions in the near vicinity of the airfoil. Effects of
nonlinearities tend to diminish rapidly with increasing distance from the airfoil, so the potential distri-
bution of the shock loaded finite thickness airfoil rapidly approaches the linearized solution of the zero-
thickness airfoil. It appears that there is a substantial region of the finite difference grid network where
the flowfield takes on linear characteristics that do not need to be evaluated by finite difference proce-
dures. Consequently, the size of the grid network may be greatly reduced by taking advantage of the far-
field linearity characteristics of the nonlinear solution by coupling an appropriate linear far-field
solution with the nonlinear near-field solution. A schematic of such a modification procedure is shown in
Figure 4.

The grid network would be reduced to some moderate size and the solution region would be sepa-
rated into two parts. The linearized solution region outside of the network would extend to infinity from
the outer boundary and the nonlinear solution region would be confined to the interior grid network.
Sources (and perhaps doublets) of unknown strengths would be applied to the outer faces of the grid
network in order to couple the two dissimilar solution regions. Solution coupling is obtained by match-
ing both the velocity potential and its normal derivative on the interface boundary of the reduced size
network.

Results of the preliminary investigation indicated that it may be possible to achieve a five-to-one
reduction in the number of solution unknowns. A schematic (fig. 5) shows the network reduction that is
thought to be possible for transonic analyses of isolated two-dimensional lifting surfaces.

5
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4.0 OVERALL APPROACH

This research is directed toward determining the feasibility of coupling linearized far-field with
nonlinear near-field solution procedures to reduce the size of finite differencing grid networks presently
required in transonic analysis of three-dimensional airplane configurations.

The research is divided into two parts. The first part involves evaluating the feasibility of coupling
two dissimilar solution procedures in the analysis of two-dimensional airfoil sections with an ultimate
goal of demonstrating the capability of predicting unsteady loadings on a two airfoil (e.g., a wing-tail
combination) problem. The second part consists of extending the analysis to three-dimensional lifting
surfaces.

Existing finite difference computer programs developed to predict unsteady loadings on two-
dimensional and three-dimensional isolated lifting surfaces are to be modified by inserting algorithms
necessary to couple the linear and nonlinear solution procedures. The existing computer programs to be
modified are the Boeing-developed programs designated as OPTRAN2 and OPTRAN3.

OPTRAN2 is a finite differencing program developed to evaluate unsteady loadings on two-
dimensional airfoil sections due to infinitesimal oscillations about a steady angle of attack. Potential

solutions may be obtained for zero-thickness or finite thickness airfoil sections. Viscosity effects are not
accounted for in the program formulation; however, finite thickness loading predictions appear to be
reasonable when compared with experimental data. Also, loading predictions for the zero-thickness case
converge to values obtained from linearized theories that are known to be accurate.

OPTRAN3 is an extension of OPTRAN2 and has been formulated to predict unsteady transonic
loadings on isolated three-dimensional wing configurations.

Major tasks involved in the two-dimensional investigation are identified as follows:

1. Develop analytical expressions for the far-field potentials due to sources (and perhaps doublets) dis-
tributed on the outer face of the grid network.

2. Develop necessary algorithms to couple the two-solution procedures, modify OPTRAN2, and check
the program for accuracy of calculation.

3. Evaluate the validity of the coupling procedure by comparing computed results with exact predic-
tions on a two-dimensional zero-thickness airfoil.

4. Compare predictions of the coupling procedure with results obtained from a full-grid analysis of
OPTRAN2 applied to airfoils having attached shocks.

5. Demonstrate capability of predicting unsteady loadings on two airfoils in same flowfield (similar to a
wing-tail combination).

Major tasks to be accomplished in the three-dimensional portion of this investigation are essentially
the same as those described in the two-dimensional portion, with the exception that program modifica-
tions are to be applied to the finite span lifting surface program, OPTRAN3 and wing-tail combinations
will not be included here.

6
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5.0 TWO-DIMENSIONAL INVESTIGATION

5.1 ANALYTICAL DERIVATIONS

All analytical expressions necessary to couple two dissimilar solution regions have been derived and

are given in Appendixes A, B, C, and D.

Expressions for the spatial variation of the velocity potentials caused by distributions of sources
and/or doublets and the infinite wake are given in Appendix A.

Equations necessary to couple the linearized far-field potentials with the finite differencing near-
field potentials are derived in Appendix B.

Appendix C contains the expressions used to evaluate the potential due to the infinite wake. The

potentials due to the infinite wake are reduced to matrix coefficient form in Appendix D.

5.2 BASIC EQUATIONS EVALUATED BY OPTRAN2

Since the mathematical derivation of the method for the solution of the unsteady velocity potential
for the flow about a harmonically oscillating wing is presented in Reference 1, the discussion here will
be limited to a brief outline for the procedure for two dimensions. A more detailed discussion of the
equations for three-dimensional flow is given in Appendix E. The complete nonlinear differential equa-
tion was simplified by assuming the flow to be a small perturbation from a uniform stream near the
speed of sound. The resulting equation for unsteady flow is

[K - (y-l)cpt - (y+ 14] 9p. + cpyy - (2 pt +gptt)lk = 0, (1)

AIN where K = (1 - M 2)/(M2
,), M is the freestream Mach number of velocity U. in the x direction, x and y are

made dimensionless to the semichord b of the airfoil and the time t to the ratio b/U 0 . With the airfoil
shape as a function of time defined by the relation

yo = df(x,t),

the linearized boundary condition becomes

I = f1(xt) + ft(xt). (2)

The quantity 6 is associated with properties of the airfoil (such as maximum thickness ratio,
camber, or maximum angle of attack) and is assumed to be small. The coordinate is scaled to the
dimensionless physical coordinate yo according to

y = 6 /3 M 213y o,

and is given in terms of 6 by

The pressure coefficient is found from the relation

Cp =-~q + d

7,
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The preceding differential equation is simplified by assuming harmonic motion and by assuming
the velocity potential to be separable into a steady-state potential and a potential representing the
unsteady effects. We write for the perturbation velocity potential

-= q-0(xy) + 1(x,y)eicot (3) JS1V

and for the body shape

yo = df(x,t) = d [f0(x) + fl(x)eiut].

Since the steady-state terms must satisfy the boundary conditions and the differential equation in
the absence of oscillations, we obtain

[K- (y + 1o]po + pqoyy = 0 (4)

with
90 y = fo(x), y = O, -14 X- x 1. (5)

On the assumption that the oscillations are small and products of coI may be neglected, equations (1) and
(2) with the aid of equations (4) and (5) yield

{[K- (y + 1) 90 Jp 1 x} + cplyy - (2ic/) WIX + qpl = 0, (6)

where

q = ca2/F - ia)(Y - 1) O x

subject to the wing boundary conditions

C Y= fix + iwfl(x), y = 0, -14 X x 1. (7)

The differential equation of ( 6 ) is of a mixed type, being elliptic or hyperbolic whenever the steady
state equation ( 4 ) is elliptic or hyperbolic. The finite difference equations are formulated by using
central differencing in defining the y and z derivatives, whereas the x derivatives are evaluated using
central differencing whenever the region is subsonic (having elliptic characteristics). Upstream (or back-
ward) differences are applied in defining the x derivative at all hyperbolic stations.

The boundary condition requirement that the pressure be continuous across the wake from the
trailing edge was found in terms of the jump in potential Acp1 to be

A p1 = A O1te*Xte), (8) :

where ,p, is the jump in the potential at x = xte just downstream of the trailing edge and is determined
to satisfy tle Kutta condition that the jump in pressure vanish at the trailing edge. The quantity Acpo is
also used in the difference formulation for the derivative py to satisfy continuity of normal flow across
the trailing edge wake.

The system of equations that is solved by OPTRAN2 is the set of linear spatially variable coefficient
equations given by equation (6), where only the unsteady part of the potential is being evaluated. The
total potential given by equation (3) is composed of an unsteady part and a steady part.
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OPTRAN2 does not solve for the steady potentials - that is, it evaluates only the unsteady
potentials. Evaluation of the unsteady loadings on a finite thickness airfoil requires that the steady-state
potential distribution be obtained from an external source for input to OPTRAN2. The steady-state
program that has been used in this investigation is known as TSFOIL and is described in Reference 3.

Total potentials are obtained by adding the steady potentials of TSFOIL to the unsteady potentials
of OPTRAN2. Solutions for the unsteady potentials are obtained by a direct solution since the equations
are linear but have spatially variable coefficients.

5.3 MODIFICATION PROCEDURES APPLIED TO OPTRAN2

In the finite difference formulation for a boundary value problem of a partial differential equation,
boundary conditions must be specified on the mesh boundaries to make the system of equations solvable.
For the case of harmonic oscillations on a wing, the proper boundary conditions require outgoing waves.
The far-field solution can be approximated by the classical linearized equation. The research described
here is the investigation of prescribing singularity distributions on the mesh boundaries and matching
the resulting outer solution with the inner finite difference formulation.

Sources are distributed along individual segments of the outer boundary (as shown in fig. 6) in order
to provide continuity in the velocity potential and its normal derivative at the outer boundary.

Velocity potentials and their derivatives are calculated for each of the solution matching stations
that are located on the boundary of the reduced sized grid network. The potential calculation involves
evaluating the potential due to each of the triangular shaped source distributions and the potential due
to the infinite wake.

AM The equation for the velocity potential for a control station derived in References 1 and 4 is given by

eiAi a eikMx bp =  i a OutW- Od~d] dIX' - 4i . [o(t - Or~r] dy' + 14Plte " (x,y), (9)

where W - Ho(2) [A1  /( (x - x'? + K(y - y') )] (a Hankel function)

i 00 e'iQX'-( yx,.x= - 4-- J y ~ dx'.

The linear and nonlinear solutions are coupled together by equating potentials and normal

derivatives at the boundaries. The coupling equations for the upstream boundary are given as:

=lx - ( o2j - j)/(X 2 - X1 ) (10)

01 = (02i + vlj)/, (11)

where Cplj and 92j are the perturbation potentials from the finite difference solution. Similar relations
hold for the other three sides. Equations (9), (10), and (11) are discretized by prescribing the source#distribution at mesh points along the mesh boundary as in Figure 6. In the first attempt, the integration
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of equation (9) was performed numerically using a triangular basis function as shown in Figure 6. The
use of this basis function centered at each point on the boundary yields a continuous piecewise linear
distribution of the source strength over the boundaries, and resulting potentials are evaluated at the
discrete mesh points. At first, the values of the kernel function were calculated at the mesh points on the
boundary and interpolated quadratically at the midpoints to make an efficient program. A five point
Simpson's rule was first tried to evaluate the individual integrals of the basis function potential. The
combined equations for the inner flow and equations for the source distribution of the outer solution are
inserted into a large matrix array (see fig. 7) and solved simultaneously.

It must be noted that a substantial amount of computing time is required in evaluating the
coefficients of the potentials due to the source distributions and infinite wake. Nonetheless, it is
anticipated that the overall number of CP seconds required by this grid reduction procedure will be less
than that required for full grid analyses.

0
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9

6.0 VALIDATION FOR ZERO THICKNESS AIRFOILS

Validation of this modification procedure is established by showing the capability for accurately
predicting unsteady loadings on zero-thickness airfoils. It is then assumed that it can be accurately
applied in analyses of finite thickness airfoils that are subjected to nonlinear flows.

The accuracy of predictions obtained from this OPTRAN2 modified procedure is established by
comparing predictions obtained from a method developed by Bland (ref. 5) of NASA LRC that is known to
be accurate.

Prior to making comparisons between the results with the revised procedure and exact results, an
initial computer run was made to determine the prediction accuracy of the basic unmodified OPTRAN2
program. These results are shown in Figure 8. The continuous solid lines represent the prediction results
of the BLAND (NASA LRC) (ref. 5) method and the open symbols represent the results obtained using the
full 60 by 72 grid available in OPTRAN2. It is to be expected that small differences would be present
since the full grid OPTRAN2 does not fully account for an infinite wake but has a wake that extends only
1-1h chordlengths downstream of the trailing edge. Nontheless, the predictions appear to be reasonably
close for the most part and it is expected that small differences should exist between the full grid and
modified grid analyses.

Program checkout was then initiated and a series of computer runs was obtained to assess the
prediction accuracy of this modification procedure. Typical results of one of the grid reduction cases are
shown in Figure 9. r

It was evident that for this example the technique failed to provide reasonable predictions for the
zero-thickness case, and one would expect to obtain poor correlation for analyses of the finite thickness(@ case in mixed transonic flow conditions. Consequently, the program was reexamined for possible coding
errors and/or limitations of the applied integration techniques in order to identify the cause of the lack of
correlation.

Several coding errors were detected and the revised coding was inserted into the program. However,
these corrections only modified the predicted results by a very small amount, which essentially resulted
in revised predictions that were approximately the same as those shown in Figure 9. Integration
accuracy checks were then conducted to evaluate the accuracy level of the integration procedure. As a
result of this investigation, two program changes were made: (1) the basis function shown in Figure 6 was
changed to one that is continuous in the first derivative as shown in Figure 10, and (2) Legendre-Gauss

-g integration quadratures were inserted to replace the Simpson's Rule integration technique previously
used. Logarithmically singular integrals were formulated in analytical form and were used in place of
the quadrature techniques previously applied in this portion of the program.

Computer runs that followed these program changes result in the reasonable predictions that are
shown for a typical case in Figure 11.

In order to evaluate the effect of the shape of the basis function on prediction results, the original
piecewise continuous basis function was reinserted into the program and this change produced results
that were almost identical with the results of Figure 11. Since the results are almost identical, it is
evident that reasonable correlations may be achieved by using either one of the basis functions to define
the distributions of externally applied source distributions. The more important conclusion is that the
Simpson rule integration methods do not provide the integration accuracy necessary for good
correlations.
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After a series of computer runs, it was established that the minimum size grid network that can be
used to provide accurate predictions of unsteady loadings on zero-thickness airfoils is a grid network that
maintains at least four horizontal grid lines above and below the airfoil and at least four vertical grid
lines spaced ahead of the leading edge and behind the trailing edge. The requirement of maintaining four
grid lines above and below the surface coincides with using four grid points to calculate a second order
derivative using finite differencing techniques.

Analysis results are shown in Figure 12 for a case where four grid lines are distributed above and
below the surface and four grid lines are spaced ahead of and behind the airfoil. The grid size reduction
ratio is approximately 10:1 and was achieved at a cost that is 52% of the cost required for a full grid
OPTRAN2 analysis.

Prediction accuracy becomes unacceptable for cases where there are less than four grid lines
distributed above and below the airfoil. An example of the accuracy deterioration that may result is
shown in Figure 13 for a case where only three horizontal grid lines are distributed above and below the
airfoil.

It appears that the largest reductions that can be achieved by coupling analytical and finite
differencing techniques as applied to solutions of second order differential equations are limited to a 10:1
reduction of grid size and a 50% reduction of computer costs. These limiting values are applicable only to
linear flow systems. Reduction ratios are expected to be substantially less for analyses involving
nonlinear flows described in the next section.
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7.0 VALIDATION FOR FINITE THICKNESS AIRFOILS

Validation investigations have been extended to determine the feasibility of reducing the size of

grid networks associated with analyses of finite thickness airfoils subjected to nonlinear transonic flow
conditions.

7.1 MODERATE SHOCK LOADING CONDITIONS

The investigation was extended to evaluate the feasibility of reducing the network grid size in the
analyses of finite thickness airfoils having a moderate shock only on ,.ne side of the airfoil.

An initial investigation covered an analysis using a NACA 64A010 airfoil section oscillating in
pitch about a ldeg mean angle of attack at M = 0.80. Velocity potentials and Mach number variations for
steady-state flow conditions were obtained from the output of TSFOIL in order to initiate the OPTRAN2
analysis. Spatial variations of the flow field Mach number obtained from TSFOIL are shown in Figure 14
in the form of Mach number contour plots. The background grid is not drawn to scale but is used to
indicate the number of grid lines that were applied in the steady-state analysis. For this case, the upper
and lower boundaries are located 12.73 chordlengths above and below the surface. The forward boundary
is located 4.83 chordlengths ahead of the leading edge and the downstream boundary is located 4.89
chordlengths aft of the trailing edge. The numbers appearing in the margins represent the locations of
the unsteady grid network relative to the steady-state network. The unsteady network has 30 horizontal
grid lines above and below the surface and there are 12 vertical grid lines distributed ahead of the

S leading edge, 18 behind the trailing edge, and 42 are distributed over the length of the airfoil.

The Mach contour plot indicates that the flow characteristics ahead of and behind the airfoil deviate
from remote conditions by only a small amount. This suggests that the forward and aft boundaries may
be located very close to the leading and trailing edges similar to locations that were found to be
appropriate in analyses of zero-thickness airfoils.

Even though shocks are not present in the region below the airfoil, it appears (from a rough plot of
Mach number versus vertical distance) that the gradient of the Mach number may have nonlinear
characteristics in a region that may extend 1/2 chordlength into the flow field below the lower surface.

* This will confine the location of the lower boundary to a region that is located at a distance that is at least
1/2 chordlength or greater below the lower surface.

From a plot of Mach number versus vertical distance above the airfoil, it appears that the gradient
of the Mach number has linear characteristics at distances greater than .8 chordlength above the surface.
This should prove to be the minimum distance that the upper boundary can be located relative to the
upper surface for accurate predictions of unsteady loadings.

Results of a computer run made using the approximate boundary locations described above are
shown in Figures 15 and 16. The predictions obtained from the coupling procedure are almost identical to
those obtained by the full grid analysis method except for a small region near the midchord where minor
differences exist for the out-of-phase loadings. One possible reason for the localized difference in
predictions is that there may be spurious waves generated within the interior finite differencing grid.
Spurious waves are generally caused by satisfying the boundary conditions only at discrete points
instead of in a continuous manner around the exterior boundary. In order to evaluate this possible error
source, the program was modified to include the effects of adding doublet distributions to the exterior of
the grid boundary. The added doublets would allow using the additional boundary condition of setting
p = 0 in the interior grid region and eliminate any spurious waves in the finite differencing network. The

* predictions that resulted from this program modification were found to be almost the same as the results
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obtained by the original formulation that made use of source distributions only. It was concluded that for
this case, if spurious waves are in the inner grid, their effect was minimal and there is no need to apply
additional doublet distributions to enhance the loading predictions.

Also, prediction differences observed in Figure 16 may be due to comparing the output of two
programs that use different representations of the infinite wake. The full grid OPTRAN2 program takes
into account the wake effects only over a distance of 1-2 chordlengths downstream of the trailing edge,
whereas the coupling procedure uses the complete infinite wake. Prediction differences between
OPTRAN2 and an "exact" program of NASA-LRC (as shown in fig. 8) are of the same order of magnitude
as shown in Figure 16. Consequently, the coupling procedure results are accurate within the error bounds
defined for the full grid OPTRAN2 analysis and therefore are judged to be acceptable.

A numerical investigation was then conducted in an attempt to develop a criterion that can be
applied in defining optimum grid sizes to reduce computer costs. The investigation involved developing a
plot of the spatial variation of the Mach number as a function of the vertical distance above the airfoil
shown in Figure 17. This plot was constructed from the information contained in the upper regions of the
flow field Mach contour plot of Figure 14. Then a series of computer runs was made for analysis cases
where the upper boundary was varied while the forward, aft, and lower boundaries were maintained in
the fixed locations defined in Figures 15 and 16. Prediction results obtained from these analyses were
then judged to be acceptable or unacceptable in comparison with the reference predictions obtained from
the full grid OPTRAN2 analyses. The location of the upper boundary relative to the upper surface of the
airfoil for each analysis case was then identified on the Mach variation plot of Figure 17.

The demarcation zone that separates acceptable predictions from unacceptable predictions is
denoted by the crosshatched region. The vertical line dividing acceptable from unacceptable results is not
a single line of zero width but is a region having finite width where prediction accuracy gradually
changes from unacceptable to acceptable. The width of the region was not determined in this study since
this would require changing the vertical spacing of the horizontal grid lines that are "hardwired" into
the basic program. However, it has been determined that the demarcation zone does not include the
region where the upper boundary of the eight grid line case is located. This may be illustrated by
examining the loading predictions for the eight grid line case shown in Figures 18 and 19 where the
plotted results indicate that the predictions are unacceptable since large differences in predictions exist
over the entire chordlength including the region containing the shock loadings.

Unsteady loading predictions shown in figures 20 and 21 were obtained for the smallest size grid
network that can be used to provide acceptable results. The network size is identified as having nine grid
lines above the surface, seven grid lines below the lower surface, four grid lines ahead of the leading edge,
and four grid lines behind the trailing edge.

It should be noted that the analysis case contained within the demarcation zone and having
predictions judged to be acceptable has a gradient of the Mach number given by

AM/Ay = -0.156.

It may be coincidental but this value is nearly the numerical value of the upper limit for which linear
terms can be used to approximate transcendental functions within 1% error bounds. It appears that one
criterion that can be used to obtain accurate predictions is that the gradient of the Mach number on the
outer boundaries must be equal to or less than the numerical value of the upper limit for which linear
terms may be used to approximate transcendental functions within 1% error bounds.

The following numerical investigation is developed to evaluate the validity of using this criterion in
analyses involving small shock loading conditions.
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7.2 SMALL SHOCK LOADING CONDITIONS

The small shock loading analysis case was developed using a NACA 64A010 airfoil section
oscillating in pitch about a mean angle of attack of 1-deg at M = 0.78. The same analysis procedures used
in the previous case were applied to provide the plot of Figure 22, which represents the flow field Mach
number variation in terms of Mach contour lines.

The region below the airfoil does not have enough information to identify how far the nonlinearities
extend into the flow field. However, it is observed in comparing the locations of the Mach contour lines of
Figures 14 and 22 that the contours for the small shock loading case extend a smaller distance into the 0
lower flow field than do the contours of the moderate shock loading case. Consequently, the locations of
forward, aft, and lower boundaries will be initially set at the boundary locations defined for the network
of the moderate shock loading case.

The region above the airfoil has a sufficient number of contour lines to construct the plot of Mach
number variation with respect to vertical distance from the airfoil shown in Figure 23. Then a series of
computer runs was made for various upper boundary locations and the results were judged to be
acceptable or unacceptable and noted as such by the demarcation zone shown on the plot of Figure 23.
The demarcation zone that separates acceptable from unacceptable results is identified by the vertical

S crosshatched region.

Prediction differences become very large for cases where the location of the upper boundary lies to
the left of the demarcation zone. For example, analysis results shown in Figures 24 and 25 were obtained
for the first case located to the left of the demarcation zone. The predictions are judged to be unacceptable
since they differ by approximately 10% over the region forward of the shock and the out-of-phase shock
loading is underestimated by approximately 20%.

Once the accuracy limit of the upper boundary location was established, the lower boundary was
moved to a new location and computer runs were conducted to identify the smallest size network that
could be used to provide acceptable loading predictions for this analysis case. The unsteady loading
predictions shown in Figures 26 and 27 represent predictions obtained for the smallest size network that
can be used for providing accurate loadings. The network consists of nine horizontal grid lines above the
surface, six below, four grid lines ahead of the leading edge, and four grid lines behind the trailing edge.
The grid size reduction ratio that is achieved is greater than the 5:1 goal that was established at the
beginning of this investigation.

It appears that the previously developed criterion is also valid for this analysis case since the
gradient of the Mach number

AM/Ay = -0.135-_

lies well below the upper limit of the numerical values for which linear terms may be used to
approximate transendental functions within small error bounds.

A final check on the approximation of the criterion is made by examining its effect in predicting

loadings for systems subjected to symmetrical shock loadings. -

7.3 SYMMETRICAL SHOCK LOADINGS

The symmetrical shock loading case was developed for a NACA 64A010 airfoil section oscillating
about a 0-deg mean angle of attack at M = 0.825. The flow field Mach number variation obtained from
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TSFOIL is shown in Figure 28 in a form of Mach contour plots. Symmetrical shock loadings extend a
distance of .43 chordlength into the flow field above and below the surface.

Upper and lower grid line boundaries for a series of runs were noted on the plot of Figure 23 which
shows the spatial variation of Mach number with respect to distances above and below the airfoil. A more :'6< '
detailed plot of Mach number versus distance above the wing is shown in Figure 29. Included in this figure
is a crosshatched region indicating a demarcation between acceptable and unacceptable results based on
comparisons with OPTRAN2. The demarcation line is located in a region where the value of the gradient of
the Mach number with respect to the vertical coordinate, AM/Ay, equals -0.15, and lies within the numer-
ical upper limit where linear terms can still be used to approximate transcendental functions within 1%
error bounds. Results obtained for the case of having nine grid lines above and below the airfoil are shown
in Figure 30 and 31. Differences in the loading predictions appear to be within acceptable error bounds of
Figure 8. Consequently, the results are judged to be acceptable.

Prediction differences rapidly attenuate to zero for cases exceeding nine grid lines above and below
the airfoil. Also, prediction differences become very large for networks that have less than nine grid lines
above and below the surface. /"

It is important to note that the reason for requiring a minimum of nine grid lines distributed above
and below the airfoil for this analysis case is due to the fact that the ninth grid line (which defines the
outer boundary location) happens to be located at a vertical station that has a Mach number gradient
value that is contained within the acceptable numerical range for which linear terms may be used to
approximate transcendental functions.

'gA
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8.0 TWO AIRFOIL SOLUTION

SUnsteady harmonic oscillation of two airfoils in the same flow field was investigated to evaluate the
feasibility of reducing the size of finite differencing grid network required for a total two airfoil system
analysis. Each airfoil was encased with a separate grid network having its own individual source
distributions applied to the outer surface of each network.

The size of the grid network surrounding each airfoil was chosen to correspond to a size that was
previously found to be suitable for analysis of a single airfoil. The analysis was developed using a NACA
64A010 airfoil section oscillating at a reduced frequency of k = 0.30 about a 1-deg mean angle of attack
for M = 0.80.

Unsteady interaction effects between the two airfoils is taken into account by having the boundary
conditions of each network prescribed in such a way that the total combined source distribution
influences each of the grid regions. Interaction effects between the two airfoils influence only the

S externally applied source distributions, which in turn effect the boundary conditions on external surfaces
of the networks to change the loadings on the individual airfoils.

The boundary condition on the main airfoil was chosen to be the same as that used in a single airfoil
analysis-pitching about the leading edge. The second airfoil was maintained in a stationary position to

AW act as a reflector for the waves generated by the main airfoil. Computer programs are not available to
provide steady-state flow solutions for the combined two airfoil analysis. Consequently, we applied the
single surface steady-state TSFOIL results to each individual airfoil. That is, we represented the
steady-state flow conditions acting on the two airfoils in a manner that assumed there were no
interaction effects existing between the two airfoils. Unsteady loading predictions resulting fromC applying this assumption will be in error since steady-state shock location will not be properly defined.
However, even with these shortcomings, the feasibility of the solution matching technique can be
evaluated to determine its effectiveness in reducing grid size requirements in analyses of multiple airfoil
systems.

Program checkout included making several runs to assess the interaction influence between
vertically spaced airfoils. This verified that the unsteady loadings limited out to the same loadings
obtained for the analysis of an isolated airfoil when spatial separation became large.

Main surface unsteady loadings obtained for the two airfoil systems are compared with single
surface loadings in Figures 32 and 33, where airfoils are horizontally separated by a distance of 1.5
chordlengths and vertically separated a distance of .5 chordlength.

The reflector airfoil has a substantial influence on the loading developed on the forward surface.
This may be due to the fact that two-dimensional disturbances decay more slowly than do three-
dimensional disturbances. For two-dimensional flow, the disturbances decay in proportion to exp(-iwr)/
Vir, and in 3-dimensional flows they are proportional to exp(-iwr)/r. The shock location (predicted by the
dual airfoil system) remains in the same position as thpt pr.-dicted of the single airfoil, since its position
was determined by the steady-state solution.

In reality the second airfoil would have altered the steady-state shock location from the single
airfoil solution, and this would have been reflected in the unsteady solution as well.

However, the reflecting airfoil does have an influence on moving the shock. At the location of the
steady-state shock position, a jump in the unsteady potential usually occurs across the shock. As an

* example, Figure 34 shows a plot of the distribution of the jump in unsteady potential across the airfoil.
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We see that a jump in this quantity occurs at x = 0.18, the location of steady state-shock. From equation
D-3 in Reference 6, this jump in potential is seen to be a measure of the oscillation of the shock position.
When the motion of the shock is given by

iwtx=xle

the complex amplitude of the shock is given by the relation

X, -- [c1]/[poj.

The notation [ denotes jump across the shock. The quantity[p..] is proportional to the pressure jump
across the shock and is thus a measure of the shock strength. Figure 35 shows a plot of the jump in
unsteady potential across the shock as a function of streamwise distance between centers of the two
airfoils as the second airfoil is moved along the horizontal line y = 1.5 where y = 0 is the location of the
main airfoil. The amplitude of oscillation of the moving shock wave varies in a sinusoidal fashion and
decays as the second airfoil is moved aft.

Timing results are not available, since the solution matrix of OPTRAN2 has not been modified to ,A

allow evaluation of a two airfoil system. However, a grid size reduction ratio of 5.21:1 has been achieved
for the two airfoil system, and this value lies well within the reduction ratio goal established at the
beginning of this investigation.

8.1 COMMENTS ON THE GRADIENT OF MACH NUMBER

It was determined, after a series of numerical investigations, that acceptable unsteady loading
predictions may be achieved for all cases where the gradient of the Mach number (taken in a direction
normal to the boundaries) never exceeds a value of

AM/Ay = -.170.

It appears that this value is near the maximum value for which linear terms may be used to
approximate transcendal functions within small error bounds. This corresponds to the evaluation slopes
of derivatives within small error bounds.

Since this convergence criterion has proven to be valid for all cases investigated, it appears that it
could be applied in any type of finite differencing procedure to ensure reliable loading predictions.
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9.0 THREE-DIMENSIONAL INVESTIGATION

For the current method, the original finite difference grid with simple outgoing wave boundary
conditions is replaced with a smaller grid and an exterior distribution consisting of sources and doublets
on the boundaries of the truncated finite difference region. In the two-dimensional investigation, the
source and doublet distribution, with outgoing wave far-field conditions, was represented by a set of

S localized functions applied about a set of control points. These control points were aligned with the rows
and columns that make up the finite difference mesh and lie halfway between the outermost row and
the first interior row for each boundary. The interior finite difference potential was matched with the
amplitude and the normal derivative of the potential from the externally applied functions during the
solution process.

As presented above, this new procedure proved successful for two-dimensional flow. In extending this
< procedure to the three-dimensional problem, it is necessary to distinguish between the setting up of the

coefficient matrix and the solution of the coefficient matrix for the vector of unknowns. For the original
finite difference procedure, the cost of setting up the large but sparse coefficient matrix was small com-
pared to that required to solve for the unknowns. However, in the current procedure, calculation of the
coefficients associated with exterior distributions is quite different. For each control point there is a source
(and doublet) distribution to be calculated due to every other control point. Consequently, the dominating
cost for the new procedure is that of evaluating the influence functions associated with the exterior distri-

, butions rather than cost associated with solving the simultaneous equations. It was found that for the two-
dimensional problems presented above, approximately 80% of the cost of a run was for evaluating and
summing the influence functions to form the coefficient matrix. This problem will become even more acute
for three-dimensional configurations.

For instance, consider the three-dimensional grid network that encompasses the wing and a portion
of the wake as shown in Figure 36. The total number of unknowns that exist for a solution of OPTRAN3

@ would be

(Im - 2) (Jm - 1) (Km - 2) = 42 x 19 x 30 = 23,940 unknowns

If the outer boundaries are located halfway between X, and X2 fo he forward boundary, and
between X(43) and X(44) for the aft boundary, with the lower boundary located halfway between Z, and

. Z2 and upper boundary located between Z(31) and Z(32), with the outboard boundary located between
Y(19) and Y(20) then the number of control stations available to provide solution matching is given by 2
x 19 x 30 + 2 x 19 x 42 + 30 x 42 = 3,996 grid points available to satisfy the solution matching
procedures. However, the number of influence functions needed to be evaluated would be the square of
this number, which would be 15,968,016 influence function evaluations, if individual loading functions
were to be applied at each control station of the original outer boundary of the grid network. The
number of influence functions calculations would still be large even if the grid size were reduced to one-
half the number of grid stations in each coordinate direction. The number of influence functions calcula-
tions would then amount to approximately 7,984,008 which would be a prohibitive number of functions
to be evaluated and would defeat the cost reduction purpose of the research.

The number of influence functions to be calculated may be reduced by extending the source and
doublet distributions over larger regions; in particular, it has be,n determined that low-order global
functions may be used to represent the distributions on each boundary face. Figure 37 presents the
velocity potential distribution on the outer boundaries of a grid network as calculated using the original
finite difference procedure. These distributions must be matched in amplitude and normal derivative
with potentials generated by the source and doublet distributions. The potential distributions on the
upper, lower, and outboard boundaries are smooth and continuous, and may be generated by source and
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doublet distributions described using a few low-order polynomials. Potential distributions on the for-
ward and aft boundaries may be generated using low-order polynomials coupled with the discontinuous
potential distributions that are generated by the wake.

Although the number of unknowns have been reduced, an adequate number of control (or matching)
points may be retained by making use of least squares error procedures. Care must be taken to select
the most appropriate distributions, the minimum number of matching points, and the location of these
points to obtain optimum results.

Thus, in order to attain a more cost-effective procedure in the three-dimensional program the follow-
ing tasks were undertaken to modify the OPTRAN3 program:

1. Develop an accurate numerical procedure evaluating the potential due to the doublet sheet of the
infinite wake shed from the wing trailing edge

2. Derive relations for matching the finite difference potentials and normal derivatives with the poten-
tials and normal derivatives of the applied sources and doublets in order to satisfy boundary condi-
tions on the outer grid boundaries

3. Devise a least-squares error procedure for selecting the values of the parameters of the assumed
source and doublet distributions used to match the finite difference solution

The result of rewriting OPTRAN3 to implement the above ideas is a pilot program for calculating
the pressure distributions over harmonically oscillating rectangular wings in transonic flows. This
program is called TRINX3 for TR(ransonic-)IN(ner-e)X(terior-matching,-)3(-dimensional).

9.1 EQUATIONS EVALUATED BY OPTRAN3

The finite difference equations applicable to the interior solution region are given in Appendix E. A
brief discussion is presented to describe how the unsteady flow can be represented by a small perturba-
tion about the steady flow condition. The derivation parallels the write-up of the two-dimensional flow
equations with the exception that additional equations are given for the inclusion of the spanwise
variable and the source and doublet distributions are represented by global rather than local functions.

9.2 EQUATIONS EVALUATED BY TRINX3

Expressions given in Appendix F have been developed for the evaluation of potentials at an arbi-
trary field point due to the source and doublet distributions applied to the exterior boundaries of the
grid network. Potential equations which have been developed for each exterior face of the grid boundary
are coupled with a zero potential interior boundary condition to provide potential and normal deriva-
tives from the grid solution which are directly related to the doublet and source values from the exterior

* solutions. The form of the exterior solution is chosen to represent the outgoing wave. *

Procedures used to couple the linear exterior solution with the interior finite difference equations
are set forth in Appendix G. The relationship between the interior and exterior potentials are developed
from equating potentials and normal derivatives to satisfy the boundary conditions on the surface that
separates the two solution procedures.

Appendix H provides a description of the least-squares error solution procedure used to obtain the
best approximation of matching surface boundary conditions. The function to be minimized is composed
of two parts. The first part represents the sum of the squares of the terms that provide continuity
between the inner and outer solutions, and the second part is the sum of squares of the terms that
vanish in the region that is interior of the grid boundary. Least squares solutions are obtained from
satisfying a set of simultaneous equations developed from taking derivatives of the error function with
respect to the parameters associated with the exterior applied source and doublet distributions.

20 1



The form of the global functions for the source and doublet distributions on the grid boundaries is

Xm yn

where m and n are integers which may also be zero. The integrals of the product of these polynomial
terms and the fundamental point source and doublet functions over the grid boundaries for each of the
solution matching points are formed into arrays. Appendix I defines these arrays.

A numerical means for evaluating the potential due to the doublet distribution of the infinite wake
is contained in Appendix J. The potential induced by the wake that extends beyond the finite differenc-
ing grid network is defined as

= ± Y exp(iw(a2 -x))At (a2,Y')dy'.
4w -y1

aC exp(-iw(x'-x))( aOI/az')dx'

where 01 = exp (-A (RI +M (x'-x)))/RI

R2 = (X-X')2+(y-y') 2 +(Z-Z') 2  0

X = W/IM

The above infinite integral is identified as being the kernel function of the potential integral and
may be reduced to a more recognizable form by combining the exponentials and separating the integral •
into two parts which results in the expression

Kernel = - 1 T 2+ 2)1/2 2 O exp (T (2 +r2)1/2
az r+raz' J ('r + r

where "7 X/M; r = (x-x')

It is to be noted that the above form of the kernel function is identical with that Watkins, Runyan,
and Woolston (ref. 7), with the exception that the above kernel applies a single derivative to each of the
integral terms and the kernel of Reference 7 applies two derivatives. The difference between using one
or two derivatives depends on the objectives being sought. A single derivative provides a velocity poten-
tial and an application of an additional derivative will define a velocity field. Thus the expressions for
the kernel function defining a potential field or a velocity field only differ by an application of a single
derivative. Consequently, the kernel function used in the wake potential calculations is the kernel
function of Reference 7 multiplied by the vertical coordinate, z.

For points in the region of integration, the source has a 1/r singularity. After subtracting terms
containing the singularity from the integrands, we can perform the integration numerically. The value
of the integration of the source over the region is then found by adding the closed form integration of the
1/r terms. The theory is described in detail in Appendix K.
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Accuracy checks have been conducted to ensure that this form of the kernel function will provide
reasonably accurate potentials due to the infinite wake. The spanwise variation of the wake chordwise
integral in Figure 38 indicates that its largest value is generated at the control station and rapidly
diminishes in value in the spanwise direction. The spanwise integration procedure has been formulated
to provide sufficient accuracy by subdividing the interval into several small intervals and applying
Legendre integration quadrature procedures to each integration interval. A numerical test was con-
ducted to evaluate the accuracy of the analytic formulation and algorithm expressions in calculating the
potential distribution due to the infinite wake. The numerical test was one of calculating the potential
on the downstream face of the grid network and comparing the values of the discontinuity in potential
across the wing plane with the discontinuity in potential input from the wing trailing edge. The poten-
tial discontinuity calculated at the wing plane should be equal to the discontinuity value input from the
trailing edge of the wing if the kernel function has been accurately formulated and programmed.

The results plotted in Figure 39 indicate that the limiting value of the potential discontinuity across
the wing plane does become equal to the input discontinuity value as z approaches zero at the wing
plane. As a consequence of the above, it is assumed that the potential distributions required at the aft
boundary can be accurately generated by a combination of source and doublet distributions described by
a few low-order polynomial functions coupled with the discontinuity distribution discussed above.

A study was made to estimate what form the source and doublet polynomial distributions should
take to adequately describe the potential and its normal derivatives on the boundary of the grid region.
The jump in potential on the aft face of the grid region is taken care of by the trailing wake. If we
subtract the contribution of the wake, the resulting source and doublet distributions that satisfy the
boundary conditions will be continuous.

From a solution of the complete finite difference equations using the ADI method, the potential was
calculated on selected grid boundaries for a Mach number of 0.82 and an angle of attack of 1 deg. A
modified potential was then calculated by subtracting out the potential induced by the wake aft of the
downstream boundary. The relatively smooth behavior of this modified potential is shown in Figures 40
through 43. The real part of the modified potential is plotted versus the spanwise variable for several
values of the vertical coordinate for the downstream boundary in Figure 40. In this figure, large gradi-
ents in the potential were limited to the immediate neighborhood of the wingtip. Examples of modified
potential distributions in the vertical direction are presented in Figures 41 and 42. In Figure 41, on the
upstream boundary, the variation in both the real and imaginary parts of the modified potential is
smooth except in the immediate vicinity of the wing plane. Here, the potential and its first derivatives
are continuous across the wing plane but show large gradients in the derivative of the potential with
respect to z. In Figure 42, on the downstream boundary, there are large gradients in both the modified
potential and its derivative with respect to z. Moreover, subtracting out the wake contribution does not
eliminate the rapid variations near the wing plane z = 0. This is easily seen from Figure 43 where the
potential on the aft plane from the finite difference solution is compared with the wake contribution and
with the modified potential resulting from subtracting the wake contribution from the finite difference
potentials. This would indicate that a fairly high-order polynomial is needed to represent the source and
doublet distributions for properly matching the interior grid solution and exterior linearized solution.
However, experience has shown that good results may be obtained with a polynomial of the form

a, z + a2 z'

for the z variation when the flow is symmetric.

The potential distribution on the upper and lower grid boundaries was found to be very smooth. It
was also found that the pattern for the normal derivative on the grid boundaries was essentially the
same as the potential distribution. The results of the study are shown in Figure 37 where a typical a ,.
source (or doublet) distribution is sketched on the boundaries of the grid region.
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10.0 MESH PATTERNS AND DISTRIBUTION POLYNOMIALS
FOR THE VALIDATION STUDIES

The configuration used for the validation studies is an aspect ratio 8 rectangular wing at a Mach
number of 0.82 oscillating harmonically at a reduced frequency of 0.3 based on the semichord. The basic
finite difference mesh is 44 x 20 x 32 grid that, when used with OPTRAN3 with the two different point

~ distributions discussed below, resulted in pressure distributions that matched well with corresponding
distributions from the kernel function routine RHO4 (refs. 8 and 9). For the basic mesh, the upstream,
downstream, outboard, lower, and upper boundaries are at x = - 2.5, x = 3.0, y = 12.78, z = -4.5, and z
f +4.5, with the leading and trailing edges, and the wingtip at x = -1.0, x = 1.0, and y = 8.0 respec-
tively. For the wing of vanishing thickness, the grid points were concentrated about the leading and
trailing edges and the wingtip. For the thickness case, points were also concentrated about the shock
location at the root, x = 0.1. The mesh patterns for the x-z and x-y planes for the thickness problem are

* showr. in Figures 44 and 45. For reduced frequencies significantly smaller than 0.3, all boundaries
would have to be moved out to obtain satisfactory results with OPTRAN3.

The truncated grids for TRINX3 were obtained by simply eliminating planes of mesh point from this
basic grid. Thus a mesh of 32 x 17 x 16 was obtained by removing six y-z planes of mesh points adjacent
to the upstream and downstream boundaries, four x-y planes of points adjacent to the upper and lower
boundaries, and x-z planes of points adjacent to the outboard boundary. Since the mesh points are not
uniformly spaced, reduction in the size of the finite difference solution region is not directly related to
the reduction in number of grid points.

A second problem that must be addressed is the solution of the polynomials used to represent the
source and doublet distributions on the outer boundaries of the finite difference mesh. It is currently
assumed that the geometric characteristics of the velocity potential distributions on the boundaries as

AAA calculated with OPTRAN3 should be directly reflected in the polynomials used for the source and
- doublet distributions. With this in mind, the source and doublet distributions were selected to have the

same forms. In the vertical direction, the terms

z and z3

were selected on the upstream, downstream, and outboard grid boundary faces. Because of symmetry
about the root chord in the spanwise variable, the terms

y0, y2, andy 4

were applied to the upstream, downstream, upper, and lower faces of the grid boundary. For the
streamwise variation, we chose

x° , x, and x2

On the upstream face, for example, this yields the product terms

Z, zy2 , zy4, Z3, z'y 2 , and z3y4

leading to six parameters. Similarly six parameters result on the downstream face. On the outboard
S grid boundary we have

z, xz, x2z, z3 , xz3 , and x2 Z3
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and on the lower and upper boundaries we chose

xOyO, y2 , y4, X, xy 2 , xy 4, x2, x2y2, and x 2y 4

leading to nine parameters. Thus a total of 72 parameters associated with both sources and doublets is
required.

Finally, another advantage of using both sources and doublets for the exterior solution is that it
allows for the decoupling of the boundary points used fer the inner-outer matching from the grid points
used for the finite difference solution. The problem size, then, is reduced not only in the number of
unknown coefficients used to define the distribution polynomials, but also in the number of points at
which the matching conditions, using the least squares procedure, is applied. For the validation studies,
12 points were used in the streamwise direction, and eight points were used in both the spanwise and
vertical directions. Thus, 96 control points were used on the outboard boundary and 64 were used on
each of the four remaining boundaries. The points were uniformly spaced for all but one run. For the one
case in the flat plate study in which the points were concentrated about the wing plane, a geometric
progression algorithm was used to arrange points vertically.

9
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11.0 VALIDATION STUDIES FOR A WING OF VANISHING THICKNESS

Validation studies for a wing of vanishing thickness consist of correlating pressure distributions
calculated with the new inner-outer matching program, TRINX3, the original finite difference program,
OPTRAN3, and the kernel function program RHO4 of References 8 and 9. The configuration used for
these studies is an aspect ratio 8 rectangular wing at a Mach number of 0.82 oscillating harmonically at

* a reduced frequency of 0.3.

The first results, presented in Figures 46 and 47, compare pressure coefficients from RHO4 and from
TRINX3 for two different grids, a 32 x 17 x 16 and a 32 x 17 x 12. The smaller grid has two less x-ymplanes of points both above and below the wing, with the upper and lower boundaries being correspond-
ingly closer to the wing surface. Only the root chord and the second chord in from the tip are presented,
since results for the intermediate chords are very similar. The agreement of the 32 x 17 x 16 grid with

S RHO4 is excellent. The smaller grid doesn't agree with RHO4 quite as well near the trailing edge of the
wing. An earlier run with a grid size of 30 x 17 x 16, differing from the 32 x 17 x 16 grid by moving eight
columns in from the aft boundary instead of six, showed a large deviation from the RHO4 solution in the
vicinity of the trailing edge. This was corrected by moving the aft boundary two columns downstream,
and the comparisons are shown in Figures 48 and 49.

From Figure 40 it would appear that a better match with lower order polynomials could be accom-
S plished if the upstream and downstream grid boundaries were divided into two panels at the wingtip, yt,

with the origin of the polynomials at yt. In Figures 50 and 51, pressures from the one- and two-panel
method are compared. Also included on the graphs are results for the control points concentrated some-

S what closer to the wing plane. The results of all three methods that use a 32 x 17 x 16 grid are in close
agreement, but with the single-panel method yielding somewhat better results. Concentrating the
points near the plane z = 0 improved the two-panel method.

It has been noted in earlier studies that for small reduced frequencies the grid boundaries for the
finite difference solutions using OPTRAN3 had to be moved further from the wing to get accurate
results for the imaginary part of the pressure coefficient distribution. Figures 52 and 53 present results
for a reduced frequency of 0.01 and compares pressures from TRINX3, OPTRAN3, and RHO4. The
TRINX3 and OPTRAN3 problem setups are those used to obtain satisfactory results at a reduced fre-
quency of 0.3. It is seen that the matching procedure yields better agreement for the imaginary parts
with RHO4 than OPTRAN3, indicating that TRINX3 has significantly better far-field boundary
conditions.

0
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12.0 VALIDATION FOR A WING WITH THICKNESS

To test the matching procedure for the flow over a wing with thickness in which the flow contains a
local supersonic region with a shock, we chose the same planform as for the flat plate, but with NACA
64A010 airfoil sections. For a reference solution, we chose a Mach number of 0.82 with zero angle of
attack. The steady state potential distribution required as input to OPTRAN3 and to TRINX3 was
computed using XTRAN3S (Ref. 10). Since the flow is symmetric, a solution from OPTRAN3 can be
obtained with a moderate cost by solving one-half the grid. The solution using OPTRAN3 for a reduced
frequency of k = 0.3 required 206 cp seconds. A full-grid solution would require about eight times this
amount, making the cost prohibitive. Using the same source and doublet polynomials and the same
reduced grid of 32 x 17 x 16 as for the flat plate, the TRINX3 solution required only 72 cp seconds. This
is about 5% of the cost of a full OPTRAN3 solution.

In order for the matching procedure to be valid, the Mach number on the points inside the truncated

upper and lower boundaries must at least be subsonic. This means that the array

Ujk =K -(y + l )o jk

where K is like 1-M for M, the local Mach number, close to one, and thus must have all positive values
on the points just inside the upper and lower grid boundaries. On the vertical plane x(19), the supersonic
zone extends the farthest away from the wing surface at the root. The value of U along this column of
points, U(I=14, J=2, K), is plotted in Figure 54. Moving in eight points from the original upper and
lower grid boundaries defines the z region where U(I,J,K) at the point just inside the grid boundaries is
always positive, since the point Z(10) just inside the grid region is seen to be positive. However, moving
in nine points from the original upper and lower grid boundaries, we find that U at the point Z(11) is
negative. Figure 55 presents a map of the Macb number in the full 44 x 20 x 32 grid. The inner lines
show the 32 x 17 x 16 grid, and it is seen that this is the closest one can move the boundary of the grid
region so that the value of U is always positive and thus the Mach number is less than one. Calculations
with the 32 x 17 x 14 grid showed poor agreement with OPTRAN3. Thus it appears that 8 points is the
maximum one can move the upper and lower grid boundary inward for this particular problem.

Figures 56 to 59 show the comparison of results from OPTRAN3 and the TRINX3 solution with the
32 x 17 x 16 grid and an additional solution where the upper and lower grid boundaries are moved in
seven rows instead of eight. The agreement between the three solutions is seen to be good. The two
solutions from the matching procedure, TRINX3, are nearly the same as we should expect.

Near the wingtip, in the vicinity of the trailing edges, there appears a dip in the real part (fig. 58).
This was eliminated by moving the downstream boundary two more columns aft as is seen in Figures 60
and 61, which compare the pressure coefficients from the 32 x 17 x 16 grid with results from the 34 x 17 I
x 16 grid. This dip was also noted in the flat plate problem (see figs. 48 and 49) where it was eliminated
in similar fashion. However, it appears that the aft boundary must be moved farther aft from the

trailing edge for the thickness case than for the flat plate. Increasing the number of grid planes in the
streamwise direction only increases the computing time linearly with the number of grid points, while
increasing the number of x-z and x-y planes causes the computing time to increase as the cube of the
number of mesh points.

We also made calculations using the method in which the upstream and downstream grid bounda-
ries are divided at the wingtip into two panels, with the origin of the spanwise variable at the tip.
Figures 62 to 6o show the comparison of the single with the two-panel method and with OPTRAN3. The
two methods are in close agreement. The two-panel method gives results that are in somewhat better
agreement with OPTRAN3. The same polynomials for the source and doublets are used in each of the
two panels as in the single-panel method. Consequently, there are more parameters in the two-panel
case.
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13.0 SUMMARY AND CONCLUSIONS

The intent of this research was to evaluate the feasibility of a procedure for reducing the overall cost
of using a harmonic finite difference procedure for analyzing nonlinear transonic flow. This was to be
accomplished by reducing the number of unknowns by using a smaller finite difference solution volume
(a smaller number of mesh points) with a better far-field boundary condition achieved by distributing
sources and doublets on the outer boundaries to define a linear exterior flowfield.

The research was divided into two parts. The first part consisted of developing a solution matching
procedure for two-dimensional flow analyses, and the second part extended the analysis capability to
three-dimensional flow conditions.

The solution matching procedure that was developed for the two-dimensional flow analyses was one
of reducing the size of the grid network of the original finite difference program, OPTRAN2, in both the
horizontal and vertical direction and applying source distributions, with the proper outgoing wave
characteristics, in a piecewise continuous fashion on the outer boundaries of the reduced grid.

Inner and outer solutions were matched by equating the potentials and normal derivatives of the
inner and outer solutions at the control station locations on the outer boundary. The number of piece-
wise continuous potential functions applied to the outer boundary was equal to the number of control
stations. Thus, an exact match in both amplitude and normal derivative of the potential could be
attained at each boundary control station. This exact match in the zero thickness analysis case allowed
the solution unknowns to be reduced by a factor of 10:1 and reduced the computer usage costs by a factor 0
of 2:1. A 5:1 reduction in solution unknowns and a 40% reduction in computer costs were achieved for
the finite thickness transonic flow analysis cases. The inconsistency between the reduction in computer
usage costs and the reduction in the number of solution unknowns is due to the additional calculations
required to evaluate the arrays of influence coefficients due to the potentials applied to the outer
boundary.

It appears that a 2:1 cost reduction is the best that can be achieved for the exact solution matching
case.

The solution procedure was changed in the three-dimensional case, since an exact match would
require an excessive amount of additional calculations that would negate the reduction of computer
usage costs.

Computer costs may be reduced significantly without compromising accuracy by using global func-
tions to represent the continuous distributions of both sources and doublets on the outer boundaries of
the finite difference region and solving for the unknowns using a least squares procedure for matching
conditions across these boundaries. The solution obtained using the matching procedure applied to the
analysis of a rectangular wing of vanishing thickness of aspect ratio 8 at a Mach number of 0.82 and a
reduced frequency of k = 0.3 is in very good agreement with results from the full-grid finite difference
solution and the kernel function method. For small frequencies, the matching procedure yielded results
that were better than those from the finite difference procedure, indicating a more accurate far-field
representation. The solutions using the matching procedure for the flow over a wing with thickness of
the same planform but with a NACA 64A010 airfoil section, gave results in good agreement with the
finite difference procedure. The results indicate that reductions of 90% to 95% (from an estimated 1600
to 80 secoj .ds for the problems considered here) in computing costs can be achieved by the inner-outer
matching procedure.

It appears that this solution matching procedure does provide a viable means of reducing computer
usage costs. The initial application of this procedure is very promising, but further tests should be made
to identify the optimum number and location of boundary points, the polynomials for the representation
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of source and doublet distributions, and the location of grid boundaries to provide a further reduction in
costs. As derived, the method is applicable only to rectangular wings, although wings with small sweep
angles could be treated by constructing the grid in the manner of W. Schmidt (ref. 11). For wings of large
sweep and taper, the basic approach is feasible, but integration over the grid boundaries must incorpo-
rate the swept-wing transformation, in which the leading and trailing edges of the wing are coordinate
lines.
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Figure 15. Real Part of the Unsteady Pressure Coefficients Obtained for Oscillations About a 10 Mean Angle of
Attack at M = 0. 80.
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Figure 16. Imaginary Part of Unsteady Pressure Coefficients Obtained for Oscillations at About a 10 Mean Angle
of Attack atM =0. 80.
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Figure 17. Mach Number Variation as a Function of the Distance Above the Airfoil for M =0.80.
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Figure 18. Real Part of Pressure Coefficients Developed for a Case Where the Upper Boundary is Located in a

Region Having Nonlinear Mach Number Characteristics.
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Figure 19. Imaginary Part of Pressure Coefficients Developed for a Case Where the Upper Boundary Intersects a
Region of Nonlinear Mach Number Characteristics.
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Figure 20. Real Part of Pressure Coefficients for a Case Where the Upper Boundary is Located in the
Demarcation Zone.
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Figure 21. Imaginary Part of Pressure Coefficients Where Upper Boundary is Located in the Demarcation Zone.
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Figure 23. Mach Number Variation as a Function of the Distance Above the Airfoil for M =0. 78.
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Figure 24. Real Part of Pressure Coefficients Where the Upper Boundary Intersects a Region of Nonlinearities.
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Figure 29. Mach Number Variation as a Function of Distance Above and Below the Airfoil for M =0. 825.
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Figure 31. Imaginary Part of Pressure Coefficients Obtained for Upper and Lower Boundaries Located in the
Demarcation Zone With M =0. 825.
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Figure 32. Real Part of the Pressure Coefficients Developed on the Leading Airfoil of a Two Airfoil System
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Figure 33. Imaginary Part of the Pressure Coefficients Developed on the Leading Airfoil of a Two Airfoil System
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Figure 35. Velocity Potential Variation as a Function of Airfoil Separation Distance.
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Figure 36. Finite Span Wing and Partial Wake Embedded in Grid Network.
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Figure 37. Velocity Potential Distributions Evaluated on the Outer Boundaries Due to the Interior Finite Difference Solution.
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Figure 38. Spanwise Variation of the Wake Integral on the Z Plane Located a Distance of 0.078 Chord Lengths Above
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Figure 46. Comparison of Pressure Coafilents From RHO4 and TRINX3 With Two Grids; Flat Plate, k=O 3, Root
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Figure 47. Comparison of Pressure Coefficients From RHO4 and TRINX3 With Two Grids, Flat Plate, k=0.3, 7=0.94
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Figure 48. Comparison of Pressure Coefficients From Two TRINX3 Solutions Illustrating Effect of Moving the Downstream '-

Boundary Aft; Flat Plate, k=0.3, Root.
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Figure 50. Comparison of Pressure Coefficients From Three TRINX3 Cases; Flat Plate, k=0.3, Root.
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Figure 51. Comparison of Pressure Coefficients From Three TRINX3 Cases, Flat Plate, k=0.3, q=0. 94.
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Figure 54. Typical Variation of U With z; Column of Points on Wing at Root
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Figure 55. Steady Flow Mach Number Variation; Streamwise Plane at Root.
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Figure 56. Comparison of Pressure Coefficients From TRINX3 and RHO4; Real Part, Root
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Figure 57. Comparison of Pressure Coefficients From TRINX3 and RHO4; Imaginary Part, Root.
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Figure 58. Comparison of Pressure Coefficients From TRINX3 and RHO4; Real Part, 71=0. 94.
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.0. p 1%Figure 59. Comparison of Pressure Coefficients From TRINX3 and RHO4, Imaginary Part, q=0.94.
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Figure 60. Comparison of Pressure Coefficients From TRINX3 for Two Grids; Real Part, 77=0.94.
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Figure 61. Comparison oi rressure Coefficients From TRINX3 for Two Grids; Imaginary Part, q=0.94. ,-
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Figure 62. Comparison of Pressure Coefficients From TRINX3 for One and Two Panel Procedures; Real Part, Root
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Figure 63. Comparison of Pressure Coefficients From TRINX3 for One and Two Panel Procedures, Imaginary Part, Root.
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Figure 65. Comparison of Pressure Coefficients From TRINX3 for One and Two Panel Procedures, Imaginary Part, 7=0.94
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APPENDIX A

DERIVATION OF VELOCITY POTENTIAL FUNCTIONS FOR THE OUTER SOLUTION
COMPOSED OF SOURCE AND DOUBLET DISTRIBUTIONS FOR TWO-DIMENSIONAL

FLOW

To derive the form of the outer solution, we consider the region outside the finite differencing grid
network. The partial differential equation for the unsteady potential may be written as

+ y+ 1 (y-l)
ilx I + py + 2 (1 - M2) 1P -1K ( O 1 Yi111),1 + ico K Pl (Poxl ,  (Al)

where x, = x, and y1 = y1 \f K; Al = CL)MI(l-M 2)

The terms on the right-hand side become less significant with increasing distance from the tran-

sonic zone and will be neglected in the outer solution derivation. We make use of Green's theorem to ob- S
tain the outer solution by the following procedures.

We choose a singular function,

wy (Xi, Yi), (A2)

which satisfies L(W) = 0 for

a2 a a2

L2ix M + - + 1 (A3)

The function W is singular at X1 = Y1 = 0;
X = x1 xj,

(A4)

Yi = yi - yi,

where the primes denote the variables of integration, and xl, y1 is the reference station.

Consider the surface integral

fs (W L( p1) - cp 1(t)) ds, (A5)

with the surface S being the region outside of the region of the following sketch that includes a circle of
vanishing radius centered about the reference point xj, yl. since L(cpj) = L(tp) = 0, the integral of equation

5 vanishes.

Note: Unless otherwise stated, references made in Appendices A, B, C, and D to equations in these
appendices do not include the appendix letter or parenthesis. For example, in Appendix A, equation (A5)
would be referred to as "equation 5."

71

.".- ~%



ICR

0
R -" o 

.(.. 
7

C)
Airfoil

Figure A-1.-Area Integration for Green's Theorem

Expanding the integrand of equation 5 results in the equation
TS {w[p 11 1.- 2iA1M pjx + pjyy, + A2 (1 - M 2 ) CPa] - (Po [tl, + 2iAlMzipl I

+ Wlyi i + A2 (1-M 21i]} ds = 0, (A6)

where use has been made of the relationships

Wix x = W1X, x
1 11

1 Jzx = - Wlx

and 1 W.
t yly1Y w-llyly i . % = :=

Rearranging the terms yields the expression

fS {[1[4jzjz - pjw111 ] - 2iAM [cpilx 1 + xPi ' (w +wjyjy i - CpiwyI 1} ds = 0,

which is suitable for evaluating the integrals of Green's theorem when it is put in the following form:

S {-62W'ixl - (PWX,- 2ik1 M -  x (cpaw) + -2--[p7 WCy, - (pjWy] ds = 0. (A7)

The surface integrals are converted to line integrals (contour integrals) by using Green's theorem. .. '.,
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f ds- An.dfS ' +C 1x o-.

and WA)

f,-dCs = J A n, df,ayl C+c
p

where C represents the contour around the grid network and infinite wake, and Cp represents the contour
around the circle of vanishingly small radius located at xl, Yl. The integral around the external circle of

S radius R vanishes as R approaches infinity. Applying equations 8 to equation 7 yields

{W -- p -W }i . (A9)

We now derive the expression for tp, using the equation

wxlx1 - 2iA1 M tXl +yl + (1 - M2) = 0.

We remove the first derivative term by using the transformation

w (Xl, Yl) = exp (i, M Xl) WPo (Xl, Y1), (AlO)

where 0 (Xl, Yl) satisfies the Helmholtz equation

POX, x, + 14Joy 1y 1A1 0

Then let WO = W0 (r) (where r = P (X2 + y2)) be substituted into the Helmholtz equation to obtain he
the differential equation"-.: ,

ip o+r/~r + A2 P p= 0 ,

which is recognized as being a Bessel equation.

We choose the solution of this equation to be the Hankel function of the second type,

we(r) = H- 2 ) (Alr). (All)

This Hankel function may be approximated for large values of r by the expression •

,.e o~r ' exp (-~r/ ,(A12)%

which has characteristics of an outgoing wave whose magnitude approaches zero as r tends to infinity.

We now integrate around the small circle centered at x,,yl, using an approximation for the Hankel
function that is valid for small r, that is,

. "12 ) (A , r 0 2 i f n (r). (A M 3 .¢

Since Y = ipr for the circle, the integration of the line integral about the point xl, Yi yields
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fim fAC2±lrde=0 (A14

lim f .cr~p rdO = -4ip 1 (x1 ,yl). (A15) I

Inserting equations 14 and 15 into equation 9 results in

1 3 a- nA
(o1(x1,1) =4 'CL' an n- PI -~ - plxJ -,A16

where t'. e contour C consists of a clockwise circuit around the rectangle and the upper and lower sides of the ,.'
wake. Note that a 'p1/a n is continuous across the wake. Therefore, equation 16 becomes

cp1(xl,Y ll 14 ' p1 2- aw 1-4Mnj d,

=I

+ i A 1 -dx', (A17)
4Ia ay

where a is the x coordinate of the right-hand boundary of the grid region, and Ay, represents the jump in ,
potential across the wake. P

The jump in potential must satisfy the condition that the pressure be continuous across the wake;
that is,

Acp 1X + iwLAq21 O

or

4p1 = 40pa exp(ico(a-x)). (A18)
I

We now insert equation 10 and equation 18 into equation 17 and also regroup the terms to obtain °'.
the expression

cp1(x1 ,y) - ex(i 1Mx1 ) exp (-iAMx') (n -2iA[M ann,) tpO-1l---O df

App . ,*= a 0 ,dx'. ('.94ixp ana

- Lexp(iAMxi) f exp(-iA1Mx) exp(-iw(x -a)) dx' (A19)
4i Yl Y 0 "

. , .

%
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This equation is put into a shorter form by noting that to and a g an represent sources and dou-
blets and that the multiplier coefficients are strength distributions designated as

o = exp(-ilmxi) 1 -2iAlmyon, (A20)

andn

an= - exp(-i~mxl) pi.

Thus equation 18 is reduced to a form given by

exp(iAMx o df

_ (Pa. ex~iiMxl)f'exp(-iw(xj-a))exp(-ikMxl)-- dx,. (A21)
4ia aY i Yo

where

WO= 0, (AIV((x1 -xl)2 + (YI-Y1)2 )

0 H 21 (Al\/-((x-x') + K(y-y')2 ))

Equation 19 is the final form of the equation used to define the potential distribution in the region

outside the finite differencing grid network.
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APPENDIX B ''9

DEVELOPMENT OF THE EQUATIONS FOR COUPLING LINEARIZED FAR-FIELD
POTENTIALS WITH THE FINITE DIFFERENCE NEAR-FIELD POTENTIAL FOR

TWO-DIMENSIONAL FLOW

We establish a source distribution on the boundary of the finite difference mesh and match the solution
from this source distribution plus the infinite wake with the finite difference solution. Let the exterior S
solution be given by the sum of the potentials due to source distribution on the exterior boundary and the
potential due to the wake.

pe = exp (ik 1Mx) iV(x,y) + pw, (BI)

where -"

a %d..

= fa 2 {Ou(X )eo(Uu) + Od(X')o(Ud)} dx

b 1 '2 {O(Yof(Ud) + Or(Y')o(Ur)} dy'. (B2)
4lJb,

40W is the potential due to the wake. Here o(x') and o(y') denote the source distribution in the y =

constant and x = constant boundaries of the mesh, respectively. The u variables with the subscripts are
defined by P

u, = (A 1/2)2 {(x-x')2 + K(y-b 2)2 },

Ud = (A,/2)2 { (x-x')2 + K(y-b) 2 },

up = (A,1/2)2 (x-a,)2 + K(y-y')2 }, (B3)

and

Ur = (A,/2)2 { (x-a ) 2 
4 K(y-y')2 }.

The subscript u denotes the upper boundary; d, the lower boundary; f, the left boundary; and r, the
right boundary. The functions fC(u) are related to the Hankel function of the second kind by

'n(u) = (2/z) H'z, (B4

Note: Unless otherwise stated, references made in Appendices A, B, C, and D to equations in these
appendices do not include the appendix letter or parenthesis. For example, in Appendix A, equation (AS .
would be referred to as "equation 5."
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where u = (z/2)2 = (Ai/2 [(x-x')2 + K(y-y')2 ]. (B5)

Then z -- 1  f ((x-x')2 + K(y-y')2 ). The function fr(u) has the following property:

e;(u) = -'+i(u). (B6)

Continuity must be maintained in the potential distribution and in its normal derivative across the
interface boundary that separates near-field and far-field equations. These conditions applied to the
upstream boundary at x = a1 and y = yj are expressed as

'P2J - (Pi~ -
8 Pe

__----5x IX=a1 (B7) -W

and

2 + CplJ = Pe Ix~ a

These relations may be combined in the more convenient form e

'p2j = pe + Ax2  pe/2

and

1Pij = 'Pe - Ax 1  Pe/2 , (B8)

where 4x 1 = X2 - X1 " - --

Similarly, on the downstream boundary x = a2, the boundary conditions become

-- - q4'im-- - (Pex (a 2,yj) (B9)
Xim  Xim- 1

and

%'mi + imiJ =Ce (a 2,Yj),

or

wjmj= (pe (a 2,Yj) + AXm wex (a2,yj)/2

and (B10)

PmiJ = CPe (a 2,Yj) - AXm we, (a2,yj)/2.
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0

On the upper boundary, y =b2, we have

(pijm - Cpi~m_) / (Yj--yjmI) = pey(Xi,b 2 )

and (B1)

( pijm + pjju)/2 = ,(xj,b2),

and these simplify to

'ijm = Pe (xi,b 2) + AY. pey (xi,b 2)/2

and (B12)

4..° ¢Oim-i = SPe (xi,b 2) - AYm CPey (xi,b 2)/2,

A where Aym - YJm - (Yjml Yjm and Xim are, respectively, the maximum values of yj and x i in the mesh.

Similarly, on the lower mesh boundary, y = bl, we have

Pi2 = Pe (xi,bl) + AYI Pey (xi,bl)/2

%ll and

(Pil = Pe (xi,bl) - AYI Pey (xi,bl)/2, (B13)

where Ay, = y 2 - y.,

0
• ' The Derivation of the Exterior Potential and Its Derivatives

%"' We now evaluate the quantities pe, pex, and pey on the required boundaries. From equation (1), we
have

Pe. = exp(iA1 Mx)ltpj, + iAMtp) + (p,. (B14)

and

(ey= exp(iAMx)wvy + p(s. (B 15)

i 7

D " i79



Now

i = ( f82 [ou(X')eI(Uu) + Od(X')fl(Ud)](X-x')dx'
(B16)

+ 2 b2 [or(y')el(ueXx-al) + or(y')(r(urXx-a 2)]dy'.8i 1 0 .

Since we require 4 only on the left and right mesh boundaries, we take the limit as x-a I from
outside the mesh boundary, that is, for x <a1 . From page 49 of Reference 4, this is seen to be

tim A2 .b2
Lim 8i o3(y'Xx-ai)ei(ul)dy' I = -o,(y)/(2'fK). (B17)

Also taking the limit as x--a 2 from values outside the boundary, that is for x>a2 , we obtain

eim ;2 A- 1 b2

x-'a+ T1 8bl °r(Y')x -a2)(Ur)Iy'} = +Or(Y)/(2\'K). (B318)

Then on x = a, the derivative with respect to x becomes

W 2 = fa2 [Ou(X')4l(Uu) + Od(X')W1(Ud)] (a,-x')dx' ,OU

(819)

-o (y)/(2fK) + A2( lB2 2 O(Y9)Ud '
a 2 ) fb 2

where

= [(al-x')2 + K(y-b 2)2 /4, (320)

Ud = A2 [(al-x')2 + K(y-b) 2 ]/4,

and
u = A2[(a,-a 2)2 + K(y-y')2Y4.

In a similar manner, the derivative with respect to x on the right-hand boundary, x = a2 , becomes pdL.

A2
1f-1 2 [o,(x')f(uu) + od(x)el(Ud] (a2-x')dx'

8i a1l2
((a

2 -aB)2)

+or(y)/(2VfK) + 8I b 2 o (y')il(u )dy', .
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where

uu = A21 [(a2-x') 2 + K(y-b 2)2 /4,
(B22)

Ud = A2 [(a 2 -x') 2 + K(y-bl)2Y4,

andU,=j
1 - [(a2-aj? + K(y-y'?1/4.

Note that ut in equation 22 equals ur in equation 20.

Differentiation with respect to y yields

i2Kr

y 12, f:2 [ou(x')e1(u)Xy-b 2) + Od(X')t(UdXY-bl)] dx' (B23)

8i b1

Taking the limit as y-b 2 on the upper boundary for points outside the mesh, or y>b2, leads to

tim { a a2 ou(X')1(u)XY-b 2 )dx' } - V'K(o(x)/2) (B24)
2 8i .

as found on page 49 of Reference 4. The derivative with respect to y on the upper boundary then I
becomes

Wy = VfK(o,(x)/2) + AtK(b 2 -b 1 ) :2 Od(X')11(Ud)dx' (B25)

+ K fb 2N+ bK b2 [o(y')l(Ut + r(y )l(Ud)(b2-yy,

where 0
Ud = I. [(x-x,) 2 + K(b2-b1)21/4, (

(B326) ,=

-, 12 [(x-a) 2 + K(b2-y') 2Y4,

and
Ur [(xa2 + K(b2 -y',2/4.
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Similarly, for y-b, and y<bl,

-y ) b1 - 2) f2 o,,(x')2I(u,.)dx' - JK( od(X)/2 )
8i a

(B27)

+ Lj b2[o,(y'
2

1 (ut) + ar(y')fI(ur)b-y')dy',

where

U.~ = A, xx) + K(b2-b) 2 Y4,
(B28)

U,= A, R(x-a) 2 + K(bj-y' 214,

and U r = 12, Ix-a)2  + bl y? 4

We now represent the integration over the mesh boundaries in terms of the sum of integrals over the
basis functions. For the source distribution over the upper mesh boundary, this can be expressed in the form

fa2  = r- i+I aix)oud' (B29)
al i-2 Xl-l

where oi( 'represents the equation for the first-derivative-continuous source distribution of figure 6.
Thus:

o1(x') = 1 - 3(xi-x' 2 /d? + 2(xi _X)
3

16? for x,.1 4 x' < i

oi(x') = 1 - 3(x'-x) 2Id,+j + 2(x'-x)i+1 for x1 4 x'<~ xi,, (B30)

6i = x1-x,- 1,

and ow unknown coefficient multiplier (to be determined).
Wq

For the summation in equation 29 to represent the limits a, to a2, we must replace x, by (x, + X2)/2 a,
and xi by (xi._, + xm)/2 a a2. The coordinates yj and yj. must be changed in a similar manner.

Equation 30 has the property that the function a, and its first derivative are continuous. Note that
1 =u af(02(Alr), where r takes on the definition of

r \ /,((X-X) 2 + K(yjm -y 1) 2 1 (B31)
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for the particular case of evaluating the potential on the upper boundary at x,yjm due to sources
distributed on the lower boundary at y' = yl.

0 Then the integral in equation 29 takes the form

IJXi oi(x)T-.(2Xrx =H~ f xi [1 -( f-x') 216? 2(xj-x')3/d ] H-V§' (Alr)dx'
Xj-1 Xj-I

+ fi+ (1 - 3(x'-x 2)
2 d/i+ + 2(x'-xi)3/d+ 1] IV ) A1 (r)dx'. (B32)

xi

In the first integral on the right-hand side of equation 32, we introduce the variable

t = (xi-x') 6 i or x' = xi-t6 . (B33)

In the second integral, we let

t = (x'-xi)/di+1 or x' = x1+t6i+,. (B34)

Then the two integrals combine to give

+xi+ o(x')-§ 2 (Alr)dx' = f01 [1 - 3t 2 +2t 3] {djiS 2' (Al\-[(xi-x-ti)2 + K(Yjm-Y) 2)]

-xi-l

+ d 0 H-' (A1 J[(x,-x+tdi+1 )2 + K yl) 2)]}dt. (B35)

We perform this integration numerically by using a four-point Gaussian quadrature formula. Thus the Rill
integral becomes

fi+' oi(x')ro2' (Ajr)dx' = 7 Wtk(l - 3 t2 + 2tk) {diH 2 (AI/-[(xi-x-tkdi)2 + K(yjm-yl)2)]
xi-1 k=I

+ di+iI' 2 (A1 J-(X1 -X--tkd+l )2 + K(yjm-y1)2)] [ (B36) ",

The formula can be frther simplified by defining new weight functions, S

Wtk = (1 3t2 + 2t) Wtk, (B37)

%
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and we obtain

X*.I 4 -1X

J i o(x,)I 2)( 1jr)dx' = W Wtk{di_(l(xi-X-tkji)2 +K(yj-y))
xi-i k-i

+ d+H02 ) (Ail[(xi-X+tkj+l)2 + K(Yjr-yi9)]}. (B38)

We define a new variable in order to simplify the expressions. We let

Xokjt = f xi+ oi(x')HM0
) (A1 \q(Xk-x')2 + K(yj-ye) ])dx', (B39)

xi-I

where the potential is evaluated at Xk, yj for the source distribution located at Y=Ye, and x' ranges
between x' = x and x'=xi+. 4.

We now consider integration along the y axis analogous to equation 38 and obtain the expression
with another new variable defined as

Yo = f'j+ oj(y')H 2 (A1 f[(Xi-Xk)2 + K(y -y'?])dy',
Yj-I

4 _" j2
- Wtr{djHg2 ) (A/(x-x)2 + K(yj-y-tmdj)2I)

rn-i

+ 6j+IH02 (A1 \J[(Xi-Xk)2 + K(yj-y+tmdj+)2 ])}, (B40)

where the potential is being evaluated at xi, y, due to the source distribution located at an Xk station, and
y' ranges between y'=yjl and y'=yj+1 .

Equations 38 and 40 can be put in the same form by noting that, in terms of the variables x and \,-K
y, the Hankel function is symmetric. Thus we write for equation 39

Xokije = I /tn{I2'(A/-[(xi-Xr-rtmdi)
2 ± K(yj-y )2])

+ di+IH O(2 (A1 J[(Xi-Xk+tmdi+l) 2 + K(yj-y )21)}. (B41)

Hence, we have

Xokij f = HSO (Xk,Xi _ ,X,Xl,\/Kyj,fKy ,Al). (B42)
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An

where the zero implies that the H-o2(F) Hankel function is being used.

The k represents the x station where the potential is being evaluated, X=xk.

i represents the x' location of the source distribution x' =x i.
j represents the y' location of the source distribution y' =yj.
f represents the y location where the potential is being evaluated, y=yf.

S Similarly, we write equation 40 in the form

Yokuf -K I" Wtk { dig )(Af[( -vi, -t.~dj) + (Xr-Xi)2])
n-1

+ dj+l n 2)(A1l[(?j-W7 tn~j+l 2 + (Xk-Xi)2 ])}, (B43)

where
where 

?= f,-ky; dj = nj-nj_,; and 3 j+ = j+,j.

S Comparing equations 41 and 43, we see that

YOkij = HSO (\[Kyl, fYJY- 1 , Kyj, VfKyj+l, xi, Xk, Al). (344)

We now derive similar integration formulas for the integrals in equation 19. First consider the
integral along the downstream boundary that contributes to the potentials on the upstream boundary given
as

V'. f Yi+ I ajy' 2lurdy'.
Yj-1

This is evaluated by inserting the definition of fl(u r) that is given by equation 4 as

fl(u) =2)(C/4,

where

A, = ( X/[(xl-xi=)n + K(y-y')2].

In the subroutine call, the subscript is changed from 0 to I to denote that the integrand contains the
. V function II2)() instead of H 2(4).
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Hence we write

o3+ jy )I4(ur)dy'
Yllijt = y- (B45)

4-I

where = W d+H 2 G)~}

C= A,1 [(Xl -X )2m + K(yj - Yt-tkd)2 ]

and

4= A1 f[i(xj-xj )2 + K(yj-yf+tkj+A)I B6

Similarly, the first integral in equation 25 becomes

f a 
-I Xi+If Od(X)el(Ud)dX' =: adi f Oi(X')1l(ud)dx', (1347)

61 i-2 Xi.. 1

and

f i(X')(Ud~X' I Wt ( 26ig7'(Q)I + 2dj~ 1 (12k)I(4,) (B48)
Xj-I n=1

Where

= A1j[(xj-x-td6)2 + K(yjm-y)] (B49)

and

C= A1 \J[(xi-x+t,di+)2 + K(yjm-y 1)2 .

Replacing yj and yjm by yj and yf and x by Xk, we write for equation 48

Xlkjt o1a(x')elu)lx' = HS1 (XiIXX+9'Kj (B5

Also, equation 45 can be written as

Yl~kiltf jJ aj(y')el(u)dy' - HS1 (\fKY,fKyj-1 ,\KYj,\KyJ+,XiXk,Al). (B51)
0Yj-I I
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We now consider the integrals in equation 21 that have a factor (Xk-X') in the integrand:
2m-I 1

ea2 u+ (X')l(Uxxk-X')dX' = "oui 1 41i(x')fl(UXXk-x')dx', (B52)"1 i-2 Xi-I

" ' where u= k2[(Xk-X')2+ K(yj-yl)2]/4. (B53) .

Inserting the expression for the first-derivative-continuous source distribution for oi yields

1
Xi+1 Oi(X')e(UXXk-x')dx' -

fxi [1 - 3(xi-x')2 /dJ + 2(xi-x')3/d3]4l(UXXk-X')dx' (B54)

+ f (1 - 3(x'-xi)2 d2 + + 2(x'-x )3 /dz+IIfl(UXXk-x')dx'.1 i

Introducing the variables of equations 33 and 34 leads to another variable Xlkiji, where 1 denotes the use of
the Hankel function of order 1.

The k represents the x location where the potential is being evaluated, x = Xk .
i represents the x' location of the source distribution x' = xi.
f represents the y' location of the source distribution y' = yf.
j represents the y location where the potential is being evaluated, y = yj.

So that

SXlkijt = fxi+loi(X')11(UXXk-X')dx' (B55)-xi-I

= 01 ~~[1 -3t2 +2t3 {di(Xk-xi+tdi)fj(UO)7
1 0

+Li+1(Xk-- Jtdik+n)f(u)} dt,

where

= 1 [(Xk-Xi+ti)2 + K(yj-yt4 (B56)
• " (56)"

and

1 1(Xk-xi-di+) 2 + K(yj-y)Y4.

By the Gaussian quadrature formula,

4

Xlkijf I Wt. (6i(Xk-xi+tmdi)fl,Io
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+6i+I(xk-xi-tmi+)el(ul)} (B57)

=HSX(Xk,Xi-..l ,X,+1 ,'fKYj,V'XY,,Al), (B58)

where

1 AI (Xk-Xi+t,,d6i? + K(yt-y^914 (B59)

and

1  I(Xk-xi-tmdi+) 2 + K(yt-y^)]4. (B60)

Consider now the integrals in equation 23. We have

b2 'a (y')f(uXy-y')dy'

j-2 Yj-1

and, analogous to equation 40, we write

J Yj3+i oj(y')f i(u) (y, - y') dy'
yj-I 1

4
7 W tn 6/1 (uoXri, -7 + t- 6j) + 6j~ £j (ul) (nt -,I - tn dj+d) (JB2)

= HSX (v'Xyt, VKj1 'VKYj, VrKYj+l, Xi, Xk, A1), (B63) ~

where

UO I [(Xi - X?+ (?7f + ?j+ tn j 2 14 B4

I (Xi - Xk 9 + (nt -?7j - tn 6+1) 2]/4, (B65)

and

We can nowwrtedowthe equation for .Using equations 39 and 40, equation 2 can be written as

wp (xi,yj) - [auk Xoikjn,) +~ .ad ~kj
4ik-2 u +d

JM-1 (B67)

k- [f k YOilkj + rk YOiimkiJ
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where now we designate x, and as the x mesh boundary and Yi and yj as the y mesh boundary.

We now write the expressions for the normal derivatives required in the coupling procedure.

On the upstream boundary, where x = a,, the x derivative defined by equation 19 is now given insummation form as .

p. (xIyJ) = i [
° 

Xlli + O
di 

Xllilj]

(B68)

020K + 112 'Xin) I [Ork Yliimkj]"
i k-2

Similarly, equation 21, which represents the x derivative on the downstream boundary, is reduced to a
summation form given by

2 im-1

Wx (Xi'yyJ) =91 i-2 fOuixlimmj + Odi Ximiij]

(B69)
-X)m-1

+ OW(2\tK) + -x'.~ Of [k Ylimkj].

The y derivative on the upper boundary of equation 25 becomes

w"(XY)= Fj2K (yJm - yj) iml8i I =[Odk Xliklm]W Y (xi,yjm) vK Oui/2 + 8ikXiki

k-2 .a

(B70)

+ -Jm' "jib + %jY'IiU
8i 2

j=2

The y derivative on the lower boundary (y = yj) of equation 27 takes the form

2S
PA K (yl - Yjm

Wy (xi, yj) - Od \FK12 + 8i Ok Xlikjml
k-2 

(B7 1)

+ 8 7- [otj Yliljl + Orj Yiim "-j-+ i j-2 41"-

Having formulated the expressions of w, wx, and ipy, we are ready to formulate the expressions that
couple the linearized far-field equations with finite difference near-field equations on the boundary of the
grid network.
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We equate the potentials at stations of the finite differencing grid network that are located one
station ahead and one station behind the forward boundary by the relationships given in equation 8,
which are expanded to give the expressions

c°iJ = exp(ik1 Mxl) [(1-iAM h xi2) hi(xlyj) - x xW(xlYJ)]

+ (pw - Axj~cpw2 (B72)

and

p2j = exp(iAMxl) [(1+iA1 MAxl/2) p(xl,y j) + Ax l tp(xl,yj) ]2

+ pw + AxiqpW/2.

Substituting equations 67 and 68 into the first of equations 72 leads to

'plj = expdA1 Mxj){ C1 [I °iXonjmj + °diXO11mj)

Jm-I X i Oj
+ " (OCfkYOikj+OrkYO1imk) + 2 2-K

k-2

+ C 2 [X Ou Xllijm j + Odi X 11 ilj) (B73) -

Jm-I Ax!
+ (Xl-Xi) OrkYllikj + w- Ax- ,Pwx,

where

C1 = i(l+iAAxlI2)/4 and C2 = iAx 1/16. (1374)

Here, i = f-i instead of the subscript value.

The double subscripted sigmas of equation 73 represent the unknown coefficient multipliers of the
individual source distributions that are distributed on the outer boundary shown in figure 8.

oui is associated with the sources distributed on the upper boundary; Odi is associated with the
sources on the lower boundary; ofj represents the source strengths on the upstream boundary; and o is
applicable to the downstream boundary source strengths. ,,

There are (i,,-2) variables on the upper and lower boundaries and (jm- 2 ) variables on upstream and

downstream boundaries. The variables are numbered by beginning with the source distribution on the
upper surface, followed by the sources distributed on the lower surface, then those on the upstream 8 .-,
boundary, and ending with the distributions on the downstream boundary.
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We replace the double subscripts by a single subscript k that progressively increases in value

around the periphery of the boundary and is designated as

ou for 2 < i im-1, ok; k=1 to (i.-2)

oa for 2 < i Oim1, 0 k; k=(i- 1) to 2(i.-2)

oj for 2 <j <j.-, ok; k=2(im-2)+l to 2(i.-2)+jm-2

oj for 2 < j <j.-1, ok; k=2(im-2)+jm-1 to 2(im+j,-4).
(B75)

Thus the total number of source variables is seen to be

NS = 2(im-2) + 2(jm-2). (B76)

We designate the coefficient of on in the nth equation as

w(m,n).

Hence the equation 73 may be written for the j -1 equation, for 2 < j 4 (,- 1), as

NS

9pj =" W(j-1,k)ok + 9ow - AxzcpOw/2.
k-I

The W(j- 1,k) terms are coefficient multipliers of source strengths for equations that define the potentials
at stations located one station forward of the upstream boundary.

W(j- 1,i- 1) = exp(iUiMx 1) ClXolijmj + C2 X 1 1 jl ; 2<i~im-i

W0j-1 ,i, +i-3) = exp(ik1Mx1XC1X01il + C2 X1111) ; 2<iim-1

L" W(j-1,2imj+k-5) = exp(iAMxXClYollkj + Axdikl(4Vfk)] ; 2kj-1
(B77)

W(j-1,2im, +jman+k-7) = exp(iAiMxXCYolimk + (Xl-Xi)C2Y11imkj]; 2<k<jm-1

S The equations that couple the linearized far-field equations with finite differencing near-field equations
for mesh stations that are located one station downstream of the upstream boundary are given by the
expression

p21 
= exp(iA1Mx) [(1+iliMAx1 12)w(xl,yj) + -- w(xy)] (B78)

+ q,.-Axjo p/2.

Inserting the expressions for W(xl,y j) and Wx(xl,y j) of equations 67 and 68 into equation 78 yields the
expression
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92 exp(iliMxl) I-C 1 , (OuiX0iij. + OdiXOi,1)

imax-I Ax.
+ I: (Of kYOiikj+OrkY0ikj) J - 0t

-C2 [ (O,,i X1iijj + adi X11i1i) (B79)

(iX)Jmax-2 1 + +

where C, is the conjugate of C I.

The W coefficients of the source strenpths are then- defined by the equation

NS
p2j 7_~ W~jm+j-3,k)Ok + cp, + Axlcpw./2,

k-i

where '

WQm+j-3,i-1i) = exp(iAMx 1 -CX 01 mi C 2 X11 1j); 24~n1

W~n+j-3,2im+k-5) =exp(iAMxi4-C 011k - x 6i 2<k] ; 1

and

W ,m+j -3,2im ~jm~k -7) = exp(iA1Mx 1A -C1YOimki -(X 1 -Xim)C-2 Yij1; 2Ukjm-l1 (B80)

In like manner, we now establish the W coefficients for the mesh potentials located on either side of
the downstream boundary. The equations for the potentials at mesh stations that are one station
upstream and one station downstream of the downstream boundary are obtained from equation 10 as

pimiJ =j exp(iAMx,) ((1- iAiMAx,/2)t(xim~yj) - AxmW.xi",yj)/2]

+ CpW- AXM y,(pJ2 (B81)

an=m exp(iA Mx i ) Ul(++ U iMAxm/2) (xim~yj) + Axmw(xim1yj)/2) 82

+ p + Ax.cpw.I2.
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Inserting the expressions for W and W,, at the downstream boundary (equations 67 and 69) into the
first of equations 81 results in the equation that defines the potential along a vertical line of mesh
stations located one station ahead of the downstream boundary.

9 eJ xp(iA1Mx1 ) {C 3 [I (OuXMuj + OdiXOiilj)

+ 1: (olkY 0i.i4 OrkYoiki]

+ ~~~~ k-2 mki+ m

+ 4Y-(Ouiy'li.mijj+ Od1X inl) + (X 1m-X1 )- Olkllkj]
j-2 k-2

+ cpw. - AUm(pwx2, (B84) 0

where

C3 = i(1iAjMAxm/2)I4,

NSS

(B5

W (2.j-5,i1 -) =exp(iAjMxim) (QXyoimijj + C4 mXd1 1 1 k] ; 2 4 k~ 4j.2 1

and

W(2jm+j-5,2im+jm+k-7) exp(iAjMxm) 1C3YOi,imkj - ~mdjk/(4 vfK)] ; 2 < k 4 im-1
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The equations for the potentials along a vertical line one mesh station aft of the downstream
boundary are obtained by inserting equations 67 and 69 into the second expression of equation 81, which
yields

cP1i = exp(iAMxim) i C3 AX(OUIXOIMj + OdiXOi 1 j)

JmI1

+ I (olkY0i2 ,k 3 + Or-kYOimimkj]
k-2

i-2

+ (XimXI) I(Olkyl,Ik Iki + &xmdkj(4K) J(B386)

+ pw + Axmcp.,./2.

The potentials given in terms of the W coefficients are then defined as

= N W(3j. +j -7,k) Ok + cpw. + Axmcpwx/2;
k-I

where

W(j~-7i1 = exp(iA1Mxjm)[-C 3X0 O ij~j - C4g 1m6mj'

and

W (3jr+j-7,im+i3) = exp(i~tiMxjM) [-*C3XOimiij - 4 1mj](B 7

where 2 4i 4 im -1; and where

W(3jm+j-7,2im +k- 5) = exp(iA,Mxim) [VC 3YOjiki - C4(Xim_ XlYlimkj,

and

W(j+-,i+mk7 = exp(iLiMxim)I~~iik + AXmdk(VXI

where 2 <k <jm-1.

We now establish the equations that couple the linearized far-field equetions with the finite%
difference equations across the lower boundary by inserting equation 15 into equation 13 and obtaining
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pj= exp(iAMx1) { W(xi,y 1) - i,(x,) }+q- y~/2

and (B88)

p2= exp(i. 1 Mx1) { W(x1,y1) + A-,WY(xi,y 1) }+ cP.,w + AyipwI2.

~ Inserting equations 67 and 71 into the first of equation 88 yields an expression that is applicable for
stations located one station below the lower boundary.

Cpjj expWiAMxi) { 5 [ Ok~k. + o~Odk11i)

+ I (1yij + OrjY)ij s)]
j-2

+ AYi\fK Odi/ 4

+ (Yi-y.) I [OkXlijm1

+ pOw - Ayicpw ,,2,

(where C5 =i/4; C6 iA2 KAyl/16.

The W coefficients for equations numbered 4 0.,- 2 )+i-1, where i ranges between i =2

and i= in - 1, are given by

W(4jm+i-9,k-1) = exp(il 1Mxi) (C5XOikjm1 + C6(Yf-Ym)x1kjm1L

and

W(4j+-9,im+k-3) =exp(iAMxi) [C5X~kl + AylpfK 6 ik/4]'

where the range of k is 2 4 k 4 im-1; and by (B90)~

W(4j+i-9,2irn+j-5) =exp(iAMxi) [C5Yi 1ji + WIji
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and

W(4j.+i-9,2im+jm+j-7) = exp(iAMx i) [CsYoiijl + C6YklimilJ,

where the range of j is 2 4 j - Jm- 1.

The second expression of equation 88 provides the coupling relationships between the near-field and

far-field equations for mesh stations located one station above the lower boundary. Inserting equations 67

and 71 into the second expression of equation 88 yields the coupling expression given as

'Pi2 exp(iAMx,) {C5 [ I(OuXokj I + OdkXOjk11)

+-(fyij + +ryiij)

j-2

- Ayl fK Odi/4

+ (Y1--Ymj) I ukXlikJml }k-22
+ Pw + AylipY2.

The mesh potentials are related to the W coefficients and unknown source strengths by the relationship

given as

(Pi2 - I W(4j,+i,+i11,k) Ok + Pw + Aylcpw,/2. (B92)

For equations numbered as (4(m-2) + (im-2) + i - 1) for i ranging between i = 2 and i = i-1, the W

coefficients are given as

W(4jm+i,+i-jl,k-1) = exp(ilMxi) [C5xokjm-C6(Y1-Yjm)Xikm1]

and

W(4jm+im+i-1l,im+k-3) = exp(iAMx i) [C5XOikll-Ay 1V'X dik/4 1

for 2 4 k 4 i and as (B93)
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W(4j, +im+-1 1,2i,+j-5) =exp(LjMxj 1 C5Yi 1j1-C6Y 1 1 j1

and

W(j+.i 112mj.j7 exp(iAMxi) CYOflMj1-~C6Y 1ii~j1

for 24j <jm-1.

The final two sets of W coefficients are obtained by inserting equation 15 into equation 12, which results
in the expressions given by

'PIim = exp(iAMxi) [w(xi,ym) - Aymwy(xi,y.)/2 1 + Cpw. - AymcpOwf 2

4 ~ and (B94)

cpjj = exp(iAMxi) [tP(xj,ym) + AymWY(xi,ym)121 + pw + &ymcpwY/2.

Inserting the expressions for w(xi,ym) and Wy(xi,ym) from equations 67 and 70 into the first of equation 94
results in

=pj- exp(iAMxi) { 5 [ +IdXilm

+ T. (0jiYi 1 , + %rYoii )]
j-2

- &ymv-K oujI4  (B395)

+C7[ I (fjYij + O.1Y 'iimIjm)

+ XYm-l I dk~likljmI

+ ;Pw - yCw2

where 07 = 1KAym/16.

The mesh potentials (developed for stations that are located one station below the upper boundary) are
A" related to the W coefficients and unknown source strengths by the relationship given as
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NS
I W(4jm+2m+j13,k) Ok + Pw, - AYm9,piv/2.
k-i

The equations range in number from (40m-2) + 2(in-2) + 1 to 40,.-2) + 3(im-2) along the strip that is

located one station below the upper boundary, and the W coefficients are given as

W(j+i~-3k1 = exp(i-k1MXi) [C5XijjMj-Ay.VK 6ik/4 ]

and

W(4j.+2im+ i 13,i. +k- 3) = exp(iAMxi) tC5XOiklj+ C7(Yjm-Yl)Xljkljm]

for 2 4 k 4 i,-1, and as (B96)

W(j+i+-32mj5 expWiAMxi) [05YOji~m + C7 k 1i1jM1

and W (4jm+2im+ i 13,2im +j,+j 7) exp(iA M x ) [C5 Y i~i6 + C 7iiim mI

for 2 < j 4 jm,-,

Inserting equations 67 and 70 into the second expression of equation 94 results in the relationship for the

potentials of mesh stations located one station above the upper boundary which is given as

cpjm exp(i 1Mx1) C 5 I X(OkXOikjMjm + OdkXOkljm)

+ 7X (GtjYoil + c(jyoiimjjm))

+ Ay.fK ow/4 (B97)

C7 r ajlu + 2m23i~jm)

+ YmYl :OdkXliklj i4~

+ 4iyj, + AYm'Pw/
2 .
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The last set of equations developed to couple the near-field and far-field potentials is given in terms of the
W coefficients by the expression

NS
I W(4jm+3im+i-15,k)Ok + 40w + AymCy/2,

- k-I

where the equation number begins at 4(jm-2) + 3(im-2) + 1 and ends up at 4(m-2) + 4(im-2).

0
The W coefficients are then defined as

W(4jm + 3m+ -15,k -1) = exp(ik1 Mx2) tC5XOikjjM -AymV'K dilk/4]

and 0

W(4jm+3im+i-5,i, + k-3) = exp(iA1Mxi) [C5xoiLjm- C7(Yjm-Yl)Xlikljm]

for 2 4 k < im- I, and as (B98)

W(4jm+3im+i-15'2im+j-5) = exp(iAlMxi) [C5 Yoiijjm - C 7Yliljm]

and

W(4jm+3im+i 15,2im+Jm+j-7) = exp(iAlMXi) fC5YOiimijm- C 7Yliim ij

for 2 4J j jm-."

Note that the quantities Ax1, Axm, Ay1, AYm derive from the differencing of the normal derivative
across the boundary. The formulas as written for the w array represent these quantities as being
computed before the x variables for i = 1 and i = im are replaced by the values of the mesh boundaries, a,

S and a2. If they are computed after these variables are changed, then a factor 2 must be removed from the
denominators of the coefficients in the preceding formulas. The same thing holds for the y differences.

The only things yet to be defined are the expressions for the wake potential and its derivatives in
order to complete the expressions for coupling the near-field and far-field equations at the boundary of
the grid network. Expressions for the potential of the wake and its derivatives are developed in the
following appendix.
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m(l APPENDIX C

EVALUATION OF THE INTEGRAL FOR THE INFINITE WAKE FOR TWO-DIMENSIONAL
OFLOW

The wake integral is defined in Appendix A by the expression

A= T-- f exp(-ico(x'-xt)) lpyldx', (Cl)

which is put in the framework of our grid definition by setting xte = a2 (the downstream boundary) and
evaluating the integral from x = a2 to x -"

The function W is given in terms of coordinate differences, that is, W = 4(xl-x',yl-y) with x, = x
and y = \rKy. S

Note that

atp =-alp

Thus the wake integral reduces to

ih0efexp(_i(A(x'ja2) ) W~yldX'," (C2)

W is given in Appendix A by the expression

tp = exp(iAM(xl-x'1 )) IVo) (A \/((xl-x,)2 + y )), (C3)

where Q)(11r) is the Hankel function of the second type.

We make a change in variables by letting

i= y1 -- FKy
and 

0Y

t = xi-x,

which transforms the wake integral into the expression
: ~ ~~~~ite ex~ a_) exp(-i(.,t)exp(-iAlMt)l-I 2l(lf (t2 + 2))dt. "

pW,, =4 exp(iW,(a 2_X))8 fa;-X

Note: Unless otherwise stated, references made in Appendices A, B, C, and D to equations in these
appendices do not include the appendix letter or parenthesis. For example, in Appendix A, equation (A5)
would be referred to as "equation 5."
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Using the definition A, = WM/(1-M 2), we combine the two exponentials into a single exponential
and then replace the single integral by two equivalent integrals to obtain the expression

P - te ex.ij
0

a2-x)) -L { .=exp(-iAjt/M)IQ)(Aj\(t +,7
2))dt

f a2-x exp(-iAjt/M)IHt2)(Al,-(t 2 +n2))dt }. (C4)

The second integral can easily be evaluated using standard integration quadrature procedures.
However, it is more difficult to evaluate the first integral due to its slow rate of convergence along the
real t axis.

The integral can be evaluated more readily if the device of contour integration is applied to reduce
the integration of a slowly convergent integral defined for real variable integration to an integration of a
rapidly convergent integral defined in the complex plane.

In applying contour integration, we first identify any poles or branch point singularities in the 4.'
complex plane so that we can choose a contour that will allow an accurate integral evaluation without
having to evaluate singular functions at localized poles in the complex plane. Fortunately, the integrand
becomes singular only at the branch points t = ±ijnI. Therefore, we select a contour developed to enclose V

an area free of point singularities. The contour shown in the following sketch appears satisfactory for
performing the contour integration.

_________ 0 R +10

0 -jo t
03

0,-iInI Cr R

a-jR
; ~o-iR .-
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The sum of line integrals around the closed contour equals zero since the area enclosed by the above

contour is free of singularities (poles).

That is,

flt)dt = 0, which is represented by

'Cl 4 'CR + 'C2 + C + 'C3 = 0. (C5)

If R is allowed to approach 0, then ICR -0. Also if r -p0, then Icr-0; and we obtain

NSN

e'im {IC1 + IC2 +ICa = O'
R-o

In terms of individual line integrals, the contour integration becomes

eirn{ j exp(-il 1  (Ap/(t 2 + 2 )) dt + exp(-iA~t/M)Hi(02(Ap/,(t2+ 72)) dt

+ I-0i exp(-iAt/M)HW ) (Ap.(t2+n2)) dt } 0. (C6)

We transform the last two integrals using the transformation t = -iv to obtain

exp(iAlt/M)Ho 2 1 (ApTf(t +, 2)) dt = +i J exp(-Alv/M)Iql (A1/f((-iv) 2 + 2 )) dv

and

f-i exp(-iit/M)I°) (Ajj(t2+ 1 2)) dt = +i exp(-Alv/M)-q ) (A1\'((-iv)2+,72)) dv.

When N -%, and the integration ranges between v = ji7 to v = R, the square root term is evaluated as

((-i+ = '((-iv+iX-iv-i))

= \'((-i)2(v2-72))

= -i\ (v2-n2).

When v - rl and the integration limits are v = 0 and v = vqf, the square root term is evaluated as

- ((-iv)2+12) = V(((-iv)+i) ((-iv)-1)) f((-i)(v2- 72))

= ((-i)(i)2(n2-v2))

= ,r(y2-V2).
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Inserting the expressions for the square root terms into the appropriate integrals results in integrands
having Hankel functions of both real and complex functions.

The Hankel function of a complex function is changed into a modified Bessel function of a real
function by making use of the relations of section 9.6.4 of Abramowitz and Stegun (ref. 13), where we
observe that

Io (-iz) = Ko(z).

The Ko(z) function converges very rapidly, as is shown in figure 9.7 of Reference 13.

Thus the slowly convergent integral defined along the real axis of the variable can be evaluated as a
rapidly convergent integral defined along the negative imaginary axis that is given by

,imexp,(_i~kjtM)i.fo2' (Aj, (t2+n2))dt = iexp(Ajv/NUDKo(Xf/(v2 __n2)) dv

-i n1 exp(-Alv/M)Ho (A( -(2-v2))(dv. (C7T

Inserting equation 7 into equation 4, we obtain a revised form of the wake integral given as

-w exp(ico(a2-x)) {-o eA0t/M)I' ()p(t2 +,2)) dt.4 ~ Y

-ioexp(-Alv/M)H ( -~(2v2)) dv

+ 2 f exp(-A1 v/M)Ko(A1 /(v 2-_ 2)) dv}. (C8)

The expression for the wake integral is simplified to the form

='w {W1(x,P+w2(i)} exp(iw(a 2-x)), (C9)4

where

= exp(-iAt/M)I- 2 (A(t 2 + 2))/( 2 +t2 ) dt, (C10)

--
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We now apply transformations to simplify the numerical integrations. We first eliminate the variable of
S integration from the integration limits by inserting the transformation t = I 7It' into equation 11 to

obtain

P2 -- {-iInIJ 1exp(-A1 7lt/M)o 2 (AIviIv-(1-t 2)) dt

+ f exp(-AjIijt/M)KO(A1Ivnjl(t2-1)) dt (C12)

where the primes have been dropped.

4~ A new variable is introduced to simplify the expression even further; we let j = A. Then the equation is
reduced to

W 2 {-i C exp(-j~jt/M)I) (ICI\(l-t 2)) dt

+ f j" exp(-ICIt/M)KO(I I'.f(t 2-1)) dt }. (C13)

The singularities that exist at t = 1 are moved to the origin in the first integral by introducing
t' 1-t and by using t' = t-1 in the second integral. This leads to

P2 2 -ij exp(-( I/M) exp(It/M)I- O2 (141 -(t(2-t))) dt

+ 2t p h exp(- I C4 m/M)abexp(- I nI tMKo(I o a n(t(2 + t0)) dt, (C 14)

where the primes have been dropped. Equation 14 may be expressed in terms of a new function defined by
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WO i'exp(I I/M ) (I If((t(2-t))) dt

+ exp(-k~jtM)KO(k~j\/(t(2+t))) dt. (C15)

That is,

W'2 = [kljexp(-kI/M)WO], C6
84Z

or

W~2 = exp(-jZj/M) [Q-~i/)pO+jIjiOf~1J sgnZ. (C17)

For convenience in numerical integrations, the integrals are combined as follows:

WO ~ exp(-WtM)K 0(\/-(t(2+t))) -iexp(CtM ) (Z\v'(t(2-t)))] dt

+ 2f *exp(-WMKOWC/(t(2 +t))) dt, (018)

where the absolute sign has been dropped for convenience.

Then the derivative with respect to Z takes the form

a±Q - 1 {exp(-MX2r)[(t/M)KO(WI(t(2 +t))) +J(t(2 +t)) KI(C\f(t(2 +t)))]

2if exp(..ZtM)(tM)K(C\(t(2+t))) +,v(t(2+t)) K1(\/r(t(2+t)))] dt.(09

We simplify the expressions by letting

z2= \/-(t(2+t)),
and

and obtain =tM
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'Poz 1{ exp(-CaX2/n) [aK,(4z2) + z2K,(4z2)]

+ iexp(C)(HbQ (Czj)-z H<2)(Cz )j } dt

SUMMARY OF THE DERIVATION

The potential induced by the wake is given by equation 9 as

where n~ = fKy and C = An

The derivatives with respect to x and y are given as

cPwx = -icocpw + 'P11Wl, exp(ica(a 2-X)) (022)

andcPw ( l kl 'K 24) exp(iw (a2-X)), (C23)

where

w.= -Alv1 exp(-i 1 (a2-X)/M)H-f12 (11pf(n2 +(a2-_X?))/f(F9+ (a2-X)2 ), (025)

Wly tply-A2~n2a 2 -x )12 A\,t 2)2+n

= P1yA~K1J exp(-iA~t/MH~ 2AJt+ 1 ))~ 2 + dt, (026)

and

'P2 = exp(-kIfIM)(l-IIM)po+11pol sgnt, (027)

where 'P0 is obtained from equation 18 as

'Pa 2fwJ exp(-a4W)Ko(j~z)ti 1epa4I(2 (kCIzj) dt (028)
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and 
2 O

W0 n x(cC(KOC2+2jz) dt

(Absolute value signs have been dropped for convenience.)

Inserting equations 28 and 29 into equation 27 yields the final form Of W2, given by

and making use of the differentiation formulas

ai {ZJ1 (z)} = ZJ0(z

and

d (zK 1(z)} = zK0(z.

We obtain the derivative Of W'2 with respect to C in the form of

W24 = W2IM +exp(-C(M) { wf exp(-a)[(C+ aC/M-2--j+ CZ)KO3(4 2)

+ z2(aC+C/M-1)K 1(CZ2)j dt

2C + 2u-1/M-Cz)FQ) (CZ1)
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APPENDIX D

MODIFICATION OF COUPLING EQUATIONS FOR THE INCLUSION OF THE

- W POTENTIALS DUE TO THE INFINITE WAKE FOR TWO-DIMENSIONAL FLOW

Wake potential contained in equations 72, 81, 88, and 94 of Appendix B are terms that are designated as
9 pw, and gwy. These terms will now be put in a form that is suitable for inclusion in the W matrix. For
equations 1 j 4 j. - 1 (that apply to grid points located one station ahead of the upstream boundary),
the first of equation 72 of Appendix B has the form

NS
-- j + " 9w (x1, Yj) -- Ax (Ip l' (,yj) 

+ 7 ,k k=0.DI2 q o x1  "+ W(j-l,k)oek=0. (D1)
2k-1

For equations (J. - 1) 4 (Jm - 2 + j - 1) 4 2(jm - 2) defined for points located one station downstream of the
upstream boundary, we use the second part of equation 72 of Appendix B to obtain

NS

-02i + p (x, yj) + -x (l, yj) +I
2k- W(j+j-3,k)Ok--. (D2)

For equations 2(jm - 2) + I . 2(jm - 2) + j -1 3QGm - 2) that apply to points located one station up-
stream of the downstream boundary, the first expression of equation 81 of Appendix B gives the form

NS
i-lj + w (xi , Yj) - xiyj)+ W(2m-2)+j-1,k)Ok=0. (D3)

For equations 3qm - 2) + 1 4 3Qm - 2) + j - 1 4 4Qm - 2) that are applicable for grid points located one
station downstream of the downstream boundary, we use the second expression of equation 81 of Appen-
dix B and obtain

* m NS
-Pi+P(XY)+- wxiY)+ W (3m - 2) + - 1, k) Ok = 0. (D4)

k-1

For equations 4Qm - 2) + 1 , 4(m - 2) + i - 1 ! 40m - 2) + (m - 2) that apply to grid points located one
station below the lower boundary, we use the first expression of equation 88 of Appendix B to obtain

9j+9(iY)-L NS (D5

I~~ ~~~~~ ~~~ -- 9il+ w(i - W Oy (xi , yj) + 7 W (4(jm - 2) + i - 1, k) ok = 0. D5

k-i

For equations 4(m - 2) + (im - 2) + 1 . 4Qm - 2) + (im - 2) i - 1 . 40m - 2) + 2(im - 2) that are valid for
points located lone station above the lower boundary, we made use of the second expression of equation
88 of Appendix B to establish the equation

Note: Unless otherwise stated, references made in Appendices A, B, C, and D to equations in these
appendices do not include the appendix letter or parenthesis. For example, in Appendix A, equation (A5)
would be referred to as "equation 5."
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Ay1  NS-9 i,2 + W- (Xi, Yd) + -- p, (xi, Yl) + Y" W (4 . - 2) + (i, - 2) + i - 1, k) k - . (6

k-i

For equations 4(jm - 2) + 2(im - 2) + 1 s 4(jm - 2) + 2(im - 2) i - 1 : 4(jm - 2) + 3(i, - 2) that define the
potentials at grid points located one station below the upper boundary, we use the first expression of
equation 94 of Appendix B to derive the expression

y m  
NS

- ijm_ I" +Pw (xi y m wy (Xi, Yjm ) + " W (4(jm - 2) + 2(im - 2) + i - 1, k) k = 0. (D7)
k-1

For equations 4(jm - 2) + 3(i m - 2) + 1 - 4(jm - 2) + 3(i - 2) i - I < 40m - 2) + 4(im - 2) that represent
the equations that define the potentials at grid points located one station above the upper boundary, we
use the second expression of equation 94 of Appendix B which provides the expression

AYm NS

- ijm + 4)w (Xi'Ynm) + 2 9° y (xi, yjm)+7 W(4(jm-2)+3(i,-2)+i-1,k)ok=O. (D8)

Using equation 9 of Appendix C, the wake integral is given as

9w= ({(x,n)+V2(C)} exp(iw(xim-x)), (D9)

where 1 = VKy; C = Ali.

Acp is the jump in potential at the downstream boundary. In terms of Acp 1 l1 at the trailing edge,

A 0p = A pi l, exp(-ico(xi,-xi1+I)).

Equation 9 then becomes

ibOil + {WI(x,n)+tp2() } exp(icL)(xiI+I-x)), (D10) t.

and the derivatives of the wake potential are given by

9wx= -iwcw+ i exp(iw(xj 1+I-x)), (DI1) , '

and 
A +

C =±TI { wI,+w2)AV-K sgvny} exp(ico(xil+ 1-x)). (D12)
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~ Substituting equations 10 and 11 into equation 1 yields

Ax1 . NS
-cp 1 +g+ -L' iwpq - iLAcp, 1 +jiw1 exp(iuo(xj1 +1-xj)) kJ -i ~ )k=0

NS

-cp1j+(l+iCOAX 2)(o - 8 l, 1i+iIWi exp(iw(x,+-xl)) +1 WQj-l,k)ok 08 k-I

and

Ax11 NS
'(Pijy {tIWX+CAV2- Wjx})epiuxlx) 1W-~)k0

2 k-I
(D13)

~ Similarly, from equation 2, we obtain

+1 W((jm-2)+jrl,k)Ok =0. (D14)
k-i

~ Substituting equations 10 and 11 into equation 3 yields

9i- + iA {i~ f[~ip(x, (C)('iCAm/) Ax= '4'i exp(iw(xj1+g-xjm))

NS

+7_ W(2jm-2)+jrl,k)Ok =0. (D15)

~ Similarly, for equation 4, we obtain

- ij+ ip, 4 {[i(Xi ?j)+tP2 (CjT1(1iAxmco/2)

Ax. NS M16
+ ~ Wm}exp(ico(xj 1.+-x m))+T_ W(3(jm-2)+j-1,k)Ok = 0. D6
2 Wi)k-I

Substituting equations 10 and 11 into equation 5 leads to

CfJil + 1 [w(Xi,VfKyI)+Iw2(X1VfKy1 )] I [Wly,+W2y]} exp(ico)(xil+1 -xi))

NS
+7_ W(4(j,-2)+i-1,k)ok = 0. (D17)
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Similarly, equation 6 becomes

- PM + 11i+1 { [Wl(X,VrKY1)+lP2(Al~fKyl)] + -I (WI,,+W~] }exp(ico(xll+1-x1 ))

NS
+7_ W(4Qm2)+(i,-2)+i-,k)Ok = 0. (D18)

Substituting equations 10 and 12 into equation 7 yields

-9in1+ i4 11+1 { [W1(X,'fKY.)+I2(kl'KYV

-'&' [tp1,+W2,1 } exp(icw(xj 1,1-xj))

NS
+7_ W(4(jm,2)+2(im-2)+i-,k)Ck = 0. (D19)

k-I

Similarly, equation 8 becomes

-9i.m + !~~'{['p(x,/Ky.)+W 2(XApKyj.)]

+iyr 2 (li+W 2 I } exp(iw(xil+1-x1))

NS
+1 W(O4,m2)+3(im-2)+i-1,k)Ok = 0. (D20)

k-I

We now identifyr the W coefficients that are due to the wake terms of equations 13 to 20 by the
following expressions.

WQj-1,NS+1) = {(Wl(Xl1 ynj)+W 2(Cj)X+iwoAxl/2)- A WI} exp(ico(xil+ 1-xl)) (D21)

W((j-2)+j-~1,NS+) = { [Wl(Xi,?j)+W2(j)(iwOAX/ 2 )+ 1 w. wI} exp(iw(xl+-x)) (D22)
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W(3jM-2)+-1,NS+ 1) =i~{ fWi(i,lj)+1d2(4j)(l-iw'AXn2) + Wiz } exp(i1w(xiili,-xim)) (D24)

PW(4jM-2)+i-1,NS+l) = P{w(XAIl)+2(C1) - Ayl ['Ply+'4P2y}) exp(iw(xj 1+1-xd)) D5

W4jM-2)+(M-2)+i-1,NS+1) = P{W(X1 in1)+tP2(C1) + Ay' [Wly+tP2y] ) eXP((Xij~1 +1-X)) (D26)

0

W(4jm2)+2(jm2)+i-,NS+l) A W2y } exp(ico(xi 1+i-x1)) (D27)

W(4jM-2)+3(M-2)+i-1,NS+1) = {W1(X~?j.)+42(Zim) + 2~ ~~,i~ x~i~ 1 . 1 x) D8

We now collect the W coefficients, and we write the equations for the potentials at grid stations that
are located inside of the boundaries as

'P2j~l W((j.-2)+j-1,k)ok+Api 1 +iW((jm2)+frl,NS+ 1) = 0, (D29)
kL-i

NS

C4', 2+X W(40M-2)+(ima2)+i-,k)Ok+A~jiliW(40m2)+(im-2)+i-1 ,NS+ 1)= 0, (D3 1)

#an~adk-
NS

'Pijm-I +7 W(4(j.-2)+ 2(im,,2)+ i1,k)Ok+Api1 +iW(4om-2)+2(im-2)+ i 1,NS+ 1) =0. (D32)

The terms Pj, pim-jj cpu, and Pjm~n- are variables in the finite differencing procedures; but they are not
free variables since these variables must also satisfy the boundary conditions specified by equations 29,
30, 31, and 32. The number of equations involved in satisfying the boundary conditions at grid points

~ located one station inside of the boundaries is 2(jm-2)+2(im,,2).

We collect the remaining W coefficients and write the equations for the potentials at grid points that
are located one station outside of the interface boundary.%

NS

k-I

Om :W(30j -2)+j-1 ,k)Ok+Apl+W(3(jj)+j-1,NS+ 1) (D34)

0
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NIS
Pi. = I W(4(m-2)+i-l,k)Ok+A(Pil+W(4Qm-1)+i-1,NS+ 1) (D35)

k-I

NS
= T_ W(4(jm-2)+ 3(im-2)+ i-l,k)k+ A(p 1+W(4(jm2)+ 3(im-2)+i-l,NS+ I) (D36)

k-i

The terms on the left-hand side of the above equations are eliminated from the finite differencing
procedures by replacing them with the coupling boundary conditions given by the expressions on the
right-hand side. The expressions on the right-hand side represent the potentials at the outer stations that
are derived using the potentials of the wake and applied source distributions evaluated at the boundary.
The number of equations involved by imposing the above boundary conditions is 2(jm-2)+2(im-2).

The total number of equations involved in this coupling procedure is then equal to
(im-2)*(jm-2)+4(m-2)+4(im-2), which equals the sum of finite-differencing potentials and exterior
applied source distributions.

:"
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APPENDIX E

EQUATIONS FOR THE FINITE DIFFERENCE POTENTIALS FOR THE INTERIOR
REGION IN THREE-DIMENSIONAL FLOW

The mathematical derivation of the procedures required for the solution of the unsteady velocity poten-
tial for-the flow about a harmonically oscillating wing is given in reference 1. The following discussion
is limited to a brief outline of those procedures. The complete nonlinear differential equation has been
simplified by applying the assumption that the unsteady flow can be represented by a small perturba-
tion about the steady flow condition.

The perturbation velocity potential is given by

[K - ( - ) - (,y + 1)0.,] 0, + + .0, - (20,- 0,)/E = 0 (El)

where K (1 - M2)/M 2
(, M is the freestream Mach number of velocity U0 in the x direction and x, y

are dimensionless coordinates. Time is nondimensionalized by b/U.

The airfoil shape and displacement are defined in terms of time by the relation

zo(X,y,t) = 6f(x,y,t)

The boundary conditions are linearized and defined by

= f"(x,y,t) + f,(x,Y) (E2)

The quantity 6 associated with airfoil properties such as thickness ratio, camber, and angle of attack is
assumed to be small. The y, z coordinates are scaled to the dimensionless physical coordinates by the
relationship

y =1/ 3M 2 /3y o ;z = 61/ 3M 2/3Zo

and e is defined in terms of 6 by

oft,, , =(6/M )2 / 3

The pressure coefficient is given by

'Wo The differential equation of flow (El) is simplified by assuming harmonic motion and by assuming that
the velocity potential can be separated into a steady and unsteady potential representation. That is, we
assume that the potential can be represented by the expression

o 0 = 4o(xy,z) + 0)(x,y,z) exp(iwt) (E3)
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where the body shape definition is given by

Zo = 6fx(x,y,z,t) = 6[fo(xy) + f1 (xy) exp(iwt)] (E3A)

In the absence of oscillations, the steady state terms must satisfy the differential equation and boundary
condition given by

[K - (y + 1 X] + 0' + = 0

0( = f(xy) onz = 0 and - I s x :s I (E4)

For the unsteady condition, it is assumed that the oscillations are small and that higher order terms
may be neglected. The differential equation and associated boundary condition that must be satisfied by
the unsteady potential 01 is then given by

[[K - y+ + 01 hoi + + OI1 - (2iW/)j + qI =

lz -fix + iwf(x) on z = O, for -1r. x s I and 0 :s y s yp

where q = 2/E _ iW(. - l)4o (E5)

The differential equation of (E5) is of a mixed type, being elliptic or hyperbolic whenever the steady
state equation (E4) is elliptic or hyperbolic. The finite difference equations are formulated by using
central differencing in defining the y and z derivatives, whereas the x derivatives are evaluated using ,
central differencing whenever the region is subsonic (having elliptic characteristics). Upstream (or back-
ward) differences are applied in defining the x derivative at all hyperbolic stations.

The finite difference form of equation (E5) that is applicable to subsonic flow regions is given by

az - (as + b + a + bz + El + E2  q,-Jkl 2) + bZ 0q+I

s+I1 j-I (y j kY Z~~k kZ k+I

E14'iIj - E2 0i j - aj - b, Yj j+lk (E6)

The finite difference form applicable to supersonic regions is given by

a k0 k - j+ b Yj+ aZk + b k- E 3 - qik201ik+ b ko'.l

= (E3 + E 4)'01._- ik - E 4'0]i_2- . lk - byy lij+] k  (E7)
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where

a Zk = l/(Zk+I - Zk-1)(Zk - Zk-1) ;ay. = l/(Yi+I - YJICi- Yi)

b Zk = 1l/(Zk+ I - ZkI )(Zk+,I - Zk) b b, = l/&Yi+l - -i,(Y~ Y)

E, ciui+112k -w i ,C/E ; E2 =diUi+I/2Jk + io,d 1i/E;

E3 = -HH/i 1WC2 /C E4 dH -3/j i(d 2 /6

C= I/(xi + - XFI )(xi ,I -x 1) ; i 1  (x, -Oc

d= l/(x, I - xri,)(xg - xi) di, (x,+ - id

u = /i K 1(0 )Qoi lk 04C)~i - X,)

uriI,/Zk =K + 1'~)(.00 - 4~)(,- X'-')
iyk 0 i-lIjk '

C2  11X - X, 1-) + l/(X, - Xi-2 )

d2 i d-

0 Boundary conditions on the upper and lower wing surfaces lead to the following equations for subsonic
flow. The finite difference equation at grid points below and adjacent to the wing surface at z = Zkm, is

g i v e n b ya z k .O , k m -_ - ( a y j + b . + a , k + E l + E 2  - i k 2 0 1 i k

E~jm- iIk ~Ip - /llbZ Fij (E8)0

The finite difference boundary condition equation applicable to grid points above and adjacent to the
wing surface is given by

-(ayj + b Yj+ a Z. ,+E 'k+1)1jml+bZM01ik

E10 -' E2-01 my~ , Ik b+1o + akm Ijkmu)

= ( - i+ ljkm+ I+ -E2 1  jk + I -G.lIk+ - j +~ I k +1 +I~~k

where F~ = "~ ~ )+i'fLx,

=~ f"iU~ ) + ("J

h zk +I - Zkm (9
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The (L) and (U) superscripts refer to the lower and upper wing surfaces respectively.

Additional terms need to be added to equations (E6) and (E7) to satisfy continuity of normal flow across
the wake vortex sheet.

The term bztmAOii'
is added to the finite difference stations just below the wing, and - azkA ij is added to stations just
above the wing.

The jump in potential is given by

AOU = Ab,,+ij exp( - iW(x, - Xl) +

where AO1Ii l + 1j is the jump in potential at the first station downstream of the trailing edge and is

determined in such a manner that the Kutta condition is satisfied at the trailing edge. The jump in
potential at x, +Iis determined from the condition of a zero pressure jump across the wake as given by
the pressure equation

M,+ iWAO1  0 (EIO)

The finite difference form of equation (E1O) is given by

cII1 (A+ + Ij - AZOi4) + d11I(Aki 1 - Ao_ j) + iwao4i 0

where cH11 = (Xil - xI _ i)/(Xi + I - xiI -1 )(xil + I - xi1) -V

diii = (xjI + I - xil )/(xi + I - xil - )(xil - xii _ I (EI ! ,)

The potential jump at the first finite difference station downstream of the trailing edge then becomes

A + = c C Aj + Ckc2AOj -_

where CkcI = I - d111/c 1 - 1

ckc2 = d /c (E12)

The potential jump terms on the right-hand side of equation (E12) are the potential jump te;ms across
the wing at stations forward of the trailing edge.

The potential jump for stations on the wing is given in reference 1 by

't'iJ ikM+I -
4
'ljkM - Csi(Oiikm+2 - O$ijkm+ I)

-CsZ(4jkm - k 1) -(dsFj + ds2Fb (E13) W&
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where

CS 11(4s,(s,+ 1)) ; =, 11(4S2(S +~ 1))

dj= h(2s, + 1)14(s, + 1); d,2 = h(2S2 + 1)14(S2 + 1);

S= (Zkm+2 -Zkm+ )/h ;S 2 = (Zkm - Zkm- I)/h

h = (Zk + I zkm)

The jump in potential given by equation (E12) at the first finite difference station downstream of the
trailing edge is given as follows

=~ + A,,jI 1 -jjk , + A)24,.jkm + A31-j,+

+ A14t'iI-Ijkm+2 + A20~k- + A224'iijkm

+ A230iJk -1+ A24'1ilokm+2 - CkcI(dsIF,,.,j + dj2 F, 1

-Ckc2(dF',1, + ds2F? 1j) (E14)

where

All = Ckc2Cs2 A12 =-Ckc2(l + c.,2) ; A13 =Ckc2(l + s,) ; A14 =-Ckc2Csl

A2 1 = ckcCS; A22= ckcl(l + c,2) ; A23 =CkCI(l + c3j); A24 = Ckci,CS

As before, for stations below the wing surface and for i 2t il + 1 , an additional term is added having the
form

bk~ Iji,+i exp( - iw~x, - x,+.)

for values of yj that are less than the wingtip station.

For finite difference stations located above the surface for i > i, + 1 and jless than the tip station
value, the additional term to be added is

a Aoi ,+ ,., exp( -iw(x, x, + 1))
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APPENDIX F

SOURCE AND DOUBLET DISTRIBUTIONS TO BE APPLIED TO THE OUTER MESH
BOUNDARIES OF THE FINITE DIFFERENCE REGION FOR A WING

A combination of source and doublet distributions is to be applied to the outer surface of the reduced-size
grid network in order to provide a means for matching inner and outer solutions on the grid boundary.
The source distribution applied on the surface z' = constant is given by

(X,.,) exp(-',') dx'dy' (F1

,(x,.y,z) = (exp(iXMx)/4T) bl Y, (Fl

where r2 = (x'-x) 2 + K(y'-y)2 + K(z'-z)

The doublet distribution is defined as

pdz(xy,z) = (exp(iXMx)/47) (2 J X (F2)

which becomes

b, a, rr

We introduce new variables in order to evaluate the limiting values of the source and doublet expres-
sions when z approaches z'.

We let x, = (x'-x) / z' -zI ; Y, = (y' -y) / z' -zI

then r 2 =(z' -z) 2ro 2where r' = x' + Ky2 + K0 0 1 1 ( 4)

The limit- of the doublet integral are then transformed to

= (b2 -y) / 1z' -zI ; Xf1 = (a2-x) / Iz' -zi

yt = (b, -y) / jz'-zl ; x, = (a, -x) / Iz' -zl (F5)

, and the integral becomes
rxl['u" l[lu ___+_y__z__-_Z_,_+____ z'--_____i___Z,__Z_ sgn ]Z -ZIrod ly

ipd (xy,z) = -(exp(iXMx)) (K/41r) uIlu (X+YiIZZ1,y+yiIZZD)(, +

(F6)

Letting z approach z' for a, <x< a2 and b, <y< b2, we obtain

d,(xjy,z') = -exp(i)\Mx) (K/4ir) .s 0(x) sgnlz'-zl /r.3dxzdy, (F7)

Integrating with respect to x, yields

dx, x1  0 2
Ky + l)-x + KlyW + 1) _- K K(y + l)
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Then integrating with respect to yj leads to

pdz(x,y,z') = [exp(iXMx) u(xy) sgn(z - z')] / 2 (F9)

In a similar fashion the limiting value GA the doublet distribution, applied to the y' = constant plane
and having y approach y', is given by

pd,(X ,Z) = exp(iXMx) A(x,z) sgn(y-y') / 2 (F10)

Considering the doublet distribution applied to the x = x' surface, we obtain

,(x~,z) = -exp(iXMx)/41rf b2 c2 X+',z') ) (i + I)exp(--iXr)dy'dz' (Fll)

We then make a change in variables to facilitate the process in evaluating the limit as x approaches x'.

That is, we define

Yi = Cy'-y) / fx'-xl and z, = (z'-z) / Ix'-xl (F12)

which changes r2 to r2  (x' -x) 2 rowhere r. + K

The integral then becomes

¢pd(x,y,z) - exp(iXMx)/41r iY1u yi
'u (y +Y1 I x' -x,z+z l lx' -x)

(ixx' -xl + sgn(x' -x)) exp(-iXro)dyldzl (F13)

where

yie M b, -y Y1 = 2Y6
Ix'-xI Ix' -xl

Z1Mcj-z.Z1 = C2- Z
Ix'-xl' Ix'-xl

Then, letting x approach x' for b, <y< b? and cl <z<c2, we obtain

Vd.e(x' ,Vz) -ex(iXMx)(y,z) sgn(x' -x) dyldzj (F14)4 -r .o .i-, Z r.

Integrating with respect to z, yields

dzi 2 TF15) '4
-O (Kz + (Iy + 1)) = .K(Ky + 1)

Then integrating with respect to y yields

o(x',y,z) = exp(iXMx') p(y,z) sgn(x-x') / 2K (F16)
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The potential at a point x, y, z due to a unit source at x', y', z' is given as

O.,(x' -xvy' -yz - z) = exp( - r) / 4rr (F17)

where r2 = (x' -x) + K(' -y)2 + K(z' _z)2

The potential due to a doublet aligned with the x', y', z' planes is then given as

Xfi -r IX + exp(- Ar) (F18)

Ody =- -K(y' -y) /A+1 x(-A)T9

_ -K(z'-z) (, +) exp(_Xr)  (F20)

S We now indicate the potentials at x, y, z due to the distribution on each of the outer surfaces. For the
potential at x, y, z due to sources distributed over the forward face, we have

Se(a 1-xyz) = J' ' oF )P,( -xy' -y,z'-z) dy'dz' T21)
C1  bi

The potential expression due to sources distributed on the downstream face becomes

S,(a2 -XyZ) = r(y',z')(a 2-xy' -y,z'-z)dy'dz' (F22)

For sources distributed on the upper face, the expression becomes

S.(x,y,c2 - z) = I' 2 .(x',y'W)(X" -X ,y -y,c2 - z)dx'dy' (F23)

For sources distributed on the lower surface, the expression for the potential is given as

S(y z = 2 f2 od(x,,y,)S(x, -x,y' -y,c-z)dx'dy' (F24)
S(x,.,i-Z z= I yT24

For sources distributed on the left-hand outboard face, the potential expression is

S((xb"-Yz) = o'(x',z')O.5 (x' - x,b1 -y,z' - z)dx'dz' (F25) -
a1 C1

and, for the right-hand side source distribution, the potential is

Sx(xb 2-yZ) = ' o0(x',z')i(x' -xb 2-yz'-z)dx'dz' F26)
01 C)

S Similar expressions may be constructed for the doublet distributions. For example, for the potential due
to a doublet distribution applied to the downstream face, we have the expression

Dr(a 2 -x,y,z) = J' r(Y'Z')Od,,(a2-xy'-y,Z--z)dy'dz' (F27)
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The general expression for the potential at a station x, y, z due to source and doublet distributions
applied to the external mesh boundaries is given by0

jv0(x,y,z) = exp(iXMx) {S,(a2 -xv,z) + SI(a1 - xv,z) + D~(a2- X,Y,Z)

" Df(a - xy,z) + S,(xvy,c2 -z) + Sd(xvy,c - z) + D.(xy,c2 -z)

+ Dd(xvy,c 1 -z) + S,,gx,b2-Y,z) + Sj,(x,b1 -y,z)

+ D,,(xb 2-y,z) + D0,(xb1 -y,z) + V 1(F28)

where , is the potential due to the wake.

To obtain the external potential on the upstream face, we note from equation (F 16) that W
Dal- xya) = t~)/2K for values of x <a,.

Therefore the external potential on the upstream face is given as

i00(a, ,y,z) = exp(iAMa1 ) [Sr(az - a1 y,z) + Sl(ovy,z) + Dg(a2 - aj ya)

- AWy,z) /2K + S.(a,,y,c2 -z) + Sd(al,,- z)

+ D.(a1,y,c2-z) + Dd(ajty,cI-z) + S0 ,(a,b 2-Y,Z)

" Sj,(aj,b1 -y,z) + D0.a,b 2-Y,Z) + D,01(a~b1 -y,z)

+ !i.w0a,YZ)} F]

In a similar fashion, we evaluate the potential at stations downstream of the forward face and note from
equation (F16) that D, = + A(y,z) / 2K for values of x >a, and thus obtain

,p(a 1,y,z) =exp(iXMa 1) {S,(a2 -aijy,z) + SI(oy,z) + Dg.a2 -a1,y,z)

+ j&(y,z) /2K + S,,(a,,y,c2 -z) + Sd(a,y,c - z) ':~C *

" D,,(a 1 y,c 2-z) + Dd(a1,y,c1 -z) + Sr(a,b 2-Y,Z)

" D.I(al,bi -y,z) + D,Aa,b 2 -Y,z)

+ S01(al,bi -y,z) + (Fjyz) 30)

We now set the external potential on the interior of the grid equal to zero by imposing the boundary
condition

poa ,, = 0 (F31)

and couple equation (F31) with equation (F29) to arrive at the potential expression on the outer face as

II(a - ,y,z) =-exp(iXMa,),ty,z) /K (F32) t
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which must be used together with the interior potential expression that is set to zero

S(a2 - a ,v,z) + SI(o,y,z) + D(a 2 -a,y,z) + M,(Y,z) / 2K

+ S.(a o,c 2 -z) + Sd(aI,Y,c-z) + D.(al',c2-z) + Dd(a1 ,y,c,-z)

+ Do(al,b-y,z) + Do(aI,b2-y,z)

+ So,(al,bA-y,z) + S0 (al,bi-y,z) + 0.(a,y,z) = 0 (F33)

The potential is set equal to zero just inside of the downstream face, and we arrive at an expression for
the potential on the outer surface of the downstream face given as

po(a2 + ,YIz) = exp(iAMa2)u(y,z) / K (F34)

subject to the condition defined for the interior potential expression given as

Sgal- a2,y,z) + Sr(o,y,z) - IL,(y,z) / 2K + Df(al - a2,y,z)

+ S,(a2,y,c2 - z) + Sd(a2 ,y,cI - z) + D.(a21YC2 - Z) + Dd(a2,y,cl - z)

+ Sor(a2,b2 -YZ) + So(a 2,b-y,z) + Do,(a 2 ,b2 -y,z)

+ Do,(a2,b-y,z) + 0.(a 2,yZ) = 0 (F35)

7b obtain similar expressions for the region of the lower grid surface, we employ equation (F9), allowing

z to approach cl through values of z <c, which results in the expression for external potential given as

jpo(x,y,cI -) = - exp(iXMx)Ad(x~v) (F36)

subject to the condition that the interior potential is zero as defined by

S,(a2 -x,y,cl) + SI(ai-xy,cl) + D,(a2 -x,y,cI) + Dr(al-xy,c1 )

+ DoI(,bI-y,c) + Do,(x,b2 -y,c)

+ S,(xy,c2 -cl) + Sd(xy,o) + D,(x,y,c2-cO + ;Ld(x,y) / 2

+ Sog(x,b 2 -y,c) + SoI(x,bI-y,cI) + $'J(xy,cl) = 0 (F37)

In a similar fashion, the potential (exterior and interior) on the upper surfaces is given by

Po(X,y,c 2 +) = exp(iXMx)A.(xv) (F38)

and subject to having the interior potential set to zero, which is given as

S,(a2-x,y,c) + S,(a,1 -xy,c2) + Dr(a2 -xoy,c) + Df(a-x,y,c,)

+ S,(xv,o) + Sd(xy,c, - c2) - A,(xY) / 2 + Dd(x,y,c - c2)

I + So,(x,b 2 -y,c 2) + So(x,bI-y,c) + Dor(x,b2 -y,c 2 )

+ Do,(x,b,-y,c2) + 0.'(xy,c2) = 0 (F39)
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For the potential (external and internal) at y = b2, we obtain

jp0,(x,b 2 +,z) = exp(iXMX)IA(X,Z) TF40)

subject to having the internal potential set to zero as defined by

Sg.a2-x,b2,z) + S,(a1 -x,b2,z) + D,(a2-x,b2,Z)

+ Dt(a 1-x,b2,Z) + S,(x,b2,c2-z) + Sd(x,b2,Cl-z)

+ D,(x,b2,c2-z) + Dd$x,b 2,C1-Z) + S0,(X,o,Z)

+ Soe(x,bi - b2.z) - As0Ax,z) /2 + D,(x,b1 - b2 1Z)

+ 0.(x,b,z) =0 TF41)

mlIO
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APPENDIX G

EQUATIONS COUPLING THE POTENTIALS FROM THE SOURCE AND DOUBLET
DISTRIBUTIONS TO THE FINITE DIFFERENCE BOUNDARY POTENTIALS

The linear exterior solution is set equal to the interior finite differencing solution by equating poten-
tials and normal derivatives at the boundary that separates the two solution procedures.

The exterior potential that is developed from applying sources and doublets to the exterior boundary of
the grid network is defined as 0,

The potential at a general finite differencing grid station (ijk) of the interior grid network is represented
by 0,k-

On the forward boundary face that is located halfway between x = x, and x = x 2, the exterior potential
and normal derivative are equated to the interior potential and normal derivative of the finite- 0
differencing solution as follows:

0o(a1 y,z) = (0kjk + 01jk)/2

0o(al,y,z) = ( 2ik - 0ijk)/(X2 - XI) (G1) 0

which is rearranged to a form

01jk 0,- Aj,,

0Zjk = o + Ax 0 /2 (G2)

where Ax, = x2 - x1 .

-0
The exterior potential 00 is given in the form

00 = exp(iXMx) 0 o (G3a)

and its derivative is given as

.ox = [(1 - iAMAx1/2)4,0 + 4ox] exp(iXMx) (G3b)

We substituted equations (G3a) and (G3b) into equation (G2) to produce

Olijk = [(1 - iXMAx1/2) 00 - ax, 00x/2] exp(iXMa1 )

02jk = [(1 + iXMAx,/2) , + Ax, #0o/2] exp(iAMa) (G4)
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By taking the x derivative of the 0. expression given in equation (F28), 0,, is obtained. That is,

OX= -2- [St(al - xyz) + S,(a 2 - x'YZ) + DI(a - x,y,z)

+ D,(a2 - x,y,z) + S.(xIv,c2 - z) + Sd(x,y,c - z)

+ D,(xy,c2-z) + Dd(xv,cl-z) + So,(x,b2-YZ)

+ S0t(x,b,-y,z) + Do.(xb 2-y,Z) + Do,(x,b,-yz) + O ..wkE (G5)

All terms of eqiiation (G5) are continuous at x= a, except the term which takes the form

a (Se(a-xy,z)) = - D,(aj -xy,z) (G6)
ax

Since 0,ox vanishes identically inside of the grid region, we obtain the expression for the derivative ikox
given as

box = ,(Y,z)/K (G7)

as x approaches a, through values of x that are less than a,. For values of x > a2, the derivative
expression becomes

aox = - 'r(Y,Z)/K (G8)

Substituting equation (F32) for the definition of 0o (apyz) along with the expression for ox of equation
(G7) into equation (G4), we obtain the expressions relating the potentials of the finite-differencing grid
to the external potentials in the upstream face given as

OIjk [-(1- iXMAx,/2)At(yzk) - AXGO(yj,zk)/2] exp(iXMa,)/K

O jk = [-(1 + iXMAxl/ 2 )1t(Yj,Zk) + AXfIt(yjZk)/2] exp(iXMal)/K (G9)

Tb obtain the relationship between external and internal potentials on the downstream face, we equate
the potentials and normal derivatives at a plane that lies halfway between x = x. and
x = x,. - as follows:

-,o(a2,yj,zk) = ( .jki + Oimnik)/2

'O(a2,yj,zk) = (Oimik - Oi, ,-jk)/(Xim - Xm -) (G1O)
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which results in

Oi j k , = [( I + X M ~ ~x m / 2 ) 0 0 + Ax m O xl/2 ] e x p (iX M a d G 1 1
0jk-,j, = [(1 - iXMAxm/2V. - Axmlbo/2J exp(iXMa 2) (Gil)

The expressions for the external potential and its derivative (obtained from equations (F34) and (G8))
are inserted into (Gl1) to produce

= [(1 + iMAx m/ 2 ) yAj,Zk) - AX.ar(Yj,Zk)/2] exp(IXMa 2)/K

OiamiJk = [(1 - iXMAxm/ 2 )Ar(yj,zk) + AXmor(yj,z,)/2] exp(iXMa 2)/K (G12)

The equations applicable to the remaining faces of the network are developed following the above
procedures. Solution coupling equations developed for the lower boundary and located on a plane z = c,
situated halfway between the first and second finite-differencing stations z = z, and z z2 are given as

0.(i'j'I)= (Ow + Ofj/2

0oz(xij,C) = (O - Oijl)/(Z2 ZI) (G13)

and reorganized into

01j, = 4o(xi,~cj) - zOxycj1

OjJ = k0,(xjyj,c ) + AzjO,(xyj,c)/2 (G14)

where Az = Z2 - z.

The potential derivative, 0,, is obtained by taking the derivative of equation (F28) with respect to z.

.Zojxy,z) = exp(iXMx) 2- [S,.(a2- x,y,z) + S(aO -x,y,z)

+ D(a 2 -x,y,z) + De(ai-x,y,z) + S.(x,y,c2-z) + Sd(x,y,CI -Z)

+ D,(xyc 2 -z) + Dd(X,y,CI-Z) + So0 (x,b2-y,z) + So,(x,bl-y,z)

+ Dor(x,b 2-y,z) + Do (x,b,-y,z) + 0 (G15)
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All derivatives of equation (G15) are continuous across the boundary, with the exception of

a Sd(x,y,c-z) = - Dd(x,y,cI-z)
8Z (G16)

which is evaluated using equation (F9) with a(xy) replaced by g(x,y). On the inside of the network, 0o, is,
set to zero, and this allows the derivative on the outside to be given as

oz = exp(iXMx)a(xy) (G17)

The potential on the outside of the lower surface is given by equation (F36) as

400 = - exp(iXMx)4u(x,y) (G18)

inserting (G17) and (G18) into (G14) yields

00 [ lsd/Xiy 1) - AZDdXy)2 exp(iXMxj)

OiJ = [- d(xyj) + Azad(x,,yj)/2] exp(iMxi) (G19)

Coupling equations applicable to the upper boundary are determined in a similar manner. The upper
boundary is located on the plane z = c2 situated halfway between the two top finite-differencing sta-
tions z = zk. and z = zk,, (where km represents the maximum value of k). The boundary equations
are given as

0 (x,,yj,c2) = (OPijkm + jjkm-I)/ 2

O°z(xiYj'C2) = (jkm - 0Qkm-)/(Zkm - ZkM-I) (G20)

from which we obtain

Ojkm = + AZmo,/2

Oijkm-I = - Az,,/2

AZm Zkm - Zkm I (G21)

The derivative of the external potential is evaluated by taking the derivative of the potential equation
TF28) with respect to z and noting that all derivatives are continuous across the upper boundary except
for the derivative defined by ' l

az

130



This term is evaluated using the relationship

81 S, = D,

of equation (F9) where I(x,y) is replaced by a(xy) in (F9). Using an additional condition that the
derivative on the inside of the grid is identically zero, we then have the result that the derivative of the
potential in the region exterior of the grid becomes

0,, = - exp(iXMx,)o (x,yj)

with the external potential 0 (xy,c2) given in equation (F38) by 0 (x,y,c2) = exp(iXMx) 14u(xiyj).

The above external potential and derivative are inserted into equation (G21) to produce relationships
between the finite-differencing potentials and the exterior potentials on the upper boundary, which are
given as

[Ajkm = , - Azm.oTu(xiy)/2] exp(iXMx,)

Oijkm-I =[At.(xi.yj) + b&zmo,(xi.yj)/2] exp(iXMx,) (G22)

Coupling equations applicable to the outboard boundary are developed on a plane defined as y = b 2 that
is situated halfway between y = y, and y = yj -,. The equations that provide continuity between
potentials and normal derivatives of the interior and exterior regions are given by

2o~,Zzk) = ('kijmk +

oy(x,b2,zk) = (OiJmk - 4iJm-Ik)/(Yjm -Ym-') (G23)

which may be reorganized into the form

Ojk = o + Ay,/2

whee € iJmlk = - Aym4oY/2 (G24)

where Ay,, = yj M - yj, M -.

From equation (F10), with the conditions that

ay Sor  Do

and the interior derivative is zero, we obtain boundary conditions for the outboard boundary defined as

Oi mk = Io(xiz k) - AY.Oo(XiZk)/2J exp(iXMx,)

., = [Ao(X,,Zk) + AYa,,o(Xi,Zk)/2] exp(iXMx (G25)

* 131



The wing is assumed to be symmetrical about the wing root chord at y = 0. Thus, we combine and
simplify some of the integrals. For example, on the aft boundary at x = a2, the integral for the potential
due to a source distribution applied to the aft boundary face is expressed as

S,(a2- XIYIZ) = vs ,(y,')[,a2- xy -y,z' - z) + tk,(a 2- X,Y' + YIz' - Z)] dy'dz' (G26)

Redefining the inner expression to i

V,,(a 2 -x,y',,z'-z) = '(a 2 -x,y'-y,z'-z) + 0,s(a 2 -x,Y'+y,z'-z) (G27)

we obtain the above integral in the form

Sg(a2 -x,Yz) = ICl-O 2rgY',z') 01(a2 - ,Y ,y Z' - z)dy'dz' (G28)

The other potential integrals may be put in a similar form as indicated by the following.

S,(a - xvy,z) = jjb2 a ,(y',z') 0,(al-x~y',y,z'-z)dy'dz'

S.(xY,ct- z) = ao(X',y') 4,.(x' - x,y,y,c - z)dy'dx' (G29)
al0

For convenience, we retain separate source and doublet relations for the outboard 1aundary faces lo-

cated at y = b, and y = b2 and note that

o0 (x',Z') = Qor(X',Z') 
-
= o(X',Z')

i'.t(/'.Z') = Aor(x',z') =- A(x',Z') (G30)

We represent the distribution of sources and doublets applied to the external boundaries by a combina-
tion of global functions that are sectionally continuous over each outer boundary face. The applied
source distributions are represented by

,(Y',Z') = ' r ,' ) N %
nI Ci

NR f= a~f. (y',z') e..
I 'Z') r f . .

I'D

od(X ,y') = t fl. (xy')

NU

0"(x',y') = 0 a:f(x',y')

. NO

fa(X ,z')= V . '. z (G31)
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The doublet distributions applied to the individual boundary faces are defined as
N1.

NR,O",) Z a, 'L;', Z')

nI
NDd

NU

NO (x32).(X ", ) 130j: o (X' , )(G 2

where a and 0 quantities are parameters to be determined to satisfy the boundary conditions on the five
faces of the reduced-size grid boundary.

Doublet integrals may now be developed in the manner corresponding to the S integrals ((G28) and
(G29)) having source distributions defined by (G27). For example, the potential due to the doublet
distribution applied to the aft boundary face is defined as

D,.a 2 -x,y,z) rY',Z') [0&(a2-xy'-y,z'-z) + Od,,(a 2 -x,y' +y,z'-z)]dy'dz'
C1 0

which is rewritten as

D,(a2 -x,y,z) = 2 o ,Y ,Y,Z - z)dy'dz' (G33)
C1 0

where
(a2-xy' ,yz' -z)= #d(a 2 -x,y'-y,z'-z) + Od,(a 2-x,y'+y,z'-z)

The remaining potential expressions are described in a similar fashion.

In order to shorten the notation, the integrals of the global functions are designated as follows:

W,(a,-xy,z) = !C2 ft",z') s(a-x,y',yz'-z)dy'dz'
C

1  
0

W: (a2 -x,y,z) 2 fs(a 2 - x,y' ,y,z' - z)dy'dz'

~~W (x,y,c -Z) = °z f (x',Y') ,t4s(x'-x,y'y,c-z)dy'dx'C1 0

a]l

Wx,y,c2 -z = .; (x',y' ) (x' - x,y',y, c2 -z)dy'dx'

xo b2- X -c2 'x

., W (x,bj-y,z) = 0,O C1  (x,,) "(x,-x,Ob-YZ'-Z)dz'dx' (G34)
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Similar expressions may be constructed for the doublet distributions; for example, the potential due to
the global sheet of doublets applied to the aft boundary face is given by

Vr,(a 2-xyz) = M'"!f.(y'.z') 0..(a 2-x~y',yz'-zdy'dz' (G35) A"

C1 0

The source integral then becomes (for the aft face boundary)

S, (a2-xy z) = Ca' W, (a2 -x,yz) (G36)

and the doublet integral becomes
D, (a2-x y z) = /3V (a2 -x yz) (G37)

The boundary condition equations of equations (F32) and (F33) are revised to include the above notation
to describe the potentials on either side of the upstream boundary face:
for x < a,, ¢ojajYz) =-exp(iXMa)jt(yz)/K (G38) (
for x > a,,

NL NR

Z= anW.(oyz) + E a'W'(a2-a,,Yz)
n-I n-I

ND NU

+ n °nWn(a,y,cl-z) + n tW (alyc 2-z)

NL NR ND

1+ O.f.(yz)/2K + Z 3:V:(a2-a,y,z) + 3V.(al.y.C,-z)
n-I n-I n-I

+ 1 O"V.(ayc2-z) + E a,[ W(a,bz-y,z) + WO(aj,bj-yz)
n-I n-I

NO

+ - [ V ° (ab 2-yz) + V °(aj,bl-yz) + 0 (a,,yz) = 0 (G39)

Equations (F34) and (F35), which describe the potentials on either side of the downstream or aft bound-

ary face, are revised as follows:

for x > a2,

|0 (a2,yZ) = exp(iXMa 2)Jir(yz)/K (G40)
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for x < q2,

NL NR

0,a =yz a' W' (a, -a2,,Z) + 1;~ cW'(O,z)

n-II

+ 1;a''Wd(a2C -c Z) + Z UW,(a2 YC2Z) + Z 0.V(a-a 2,Y,Z)

NR ND NU

- 'fr (y--) + M RV(2 y~ 1 z + On Vu.(a 2,yIC2-Z)

NO

+ ; a%, [WO(a2 ,b2-Y1Z) + WO (a2,bi -y,z)]

NO(G)

+ [V(a2 ,b2 -y,z) + VO,,(a2,bl -y,z) ] + it-'(a 2,y,Z)=0(G1

Equations (F36) and (F37), which describe the potentials on either side of the lower boundary, are

revised into the following forms:

for z < c1 ,

~0 (X,C) l Id(XY) (G42)

forz> l

NL NVR

1 7 ,.(X~Y,c 1) E31 1 cx1(a, -x,y,c) + a W ( 2 X,C1 )

ND NU NL

+ I , cW.1(X,y,0) + C,4W,(Xy,c2-C1) + 1;' ~V (a, - xy,c,)

NR ND NU

+ Y, 03,V'(a2-Xy,C1 ) + R xy1 + O u3,Vu(xy,c 2-cj)

+ N O [W%(x,b 2-yC 1) + WO (x,b, -y,cl)]

NO

+ 00 [ VO,(x,b 2-y,c,) + V, (x,bj-y,cj)] + #.(x,c 1) 0 (G43)
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Potentials on either side of the upper boundary face defined by equations TF38) and TF39) are revised to
the following forms:

for z> c2,

0 (XIYIc 2) = A(,)(G44)

for z < c2 , NL NR

, 0 (x,y~c2) = cx,,W,(aj-xy,c2) + 1;a cW' (a2 - X,C 2)

ND NU NL

+ Of4W" (x,c 1- C2) + Of cWu-(X,0) + O RVl.(a1 -X,C2)

NR ND NU

+ lV(a2 - X,C 2) + ~ V(x,,- c2) - u~u(y/

NO

+ Z aOx[W.0(x,b 2 -YIC2) + WO,(x,bi -y,c 2)]

+ 1: 0,0,[VO,(x,bi -y,c2) + VO (x~bi-y~c2)] + 0,,(xvy,c,) =0 (G45)

Equations TF40) and TF41) are also reformatted into the following forms:w

for y> b2,

O0(x,b 2,Z) = 14(,)(G46)

for y < b2,

ND NU NL

+ F, a.W(x,b2,cl-z) + auW'(x,b2 ,C2 -Z) + O' V.(a, -x,b 2 Z) 77'

NR ND NU
+ ~~V~a2 -~b 2 z) O Vd(~ 2 , 1  + u Vu f3 (x,b 2,C2- Z) -

+ ; 0' [w' (2-x,,Z) + Wx~b2(x-Zb1  n %Iz)

r-I - -

NO

+ 1; [V% (x,b1 - bi,: - i: (x,z)/2] + .(x,Li,)n 21) 21) 0(G47)
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The expressions associated with boundary conditions and relating the finite differencing values to the

exterior potentials are now written using the above ,, and 0 variables.

We now define new constants to shorten the equation writeup; that is, we let 0

c= = 1 + iXM~xl/2

cj = 1 - iXMAx,/2

c 2 = I + XMi~xm/2

C2 = 1 - iXMAxm/2 (G48)

Then the coupling equations applicable to the left-hand boundary as defined by equation (G9) are refor-
matted into N

.tjk = - exp(iXMa) + Axiat' /2) f,, (yj,zk)/K (G49a)

Ok = - exp(iXMa) (c1 3, - Ax~a /2) f (yj,zk)/K (G49b)

Downstream boundary coupling equations defined in equation (G12) are revised to include the a and 0
definitions which now take the form

Oi,k = exp(iXMa2) (c " - Axa' /2) f, (yj,Zk)/K (G50a)

4
'im Ijk = exp(iXMa2) ( 2 o + AxMa" /2)f" (yj,Zk)/K (G50b)

Nf- 
i

S The lower surface boundary conditions described by equation (G19) are revised into the following forms.

exp(iXMx,) , ( - Od + AzI a/2) fd. (xiyj) (G51a)
ND

o =exp(iXMx) ( - - Az a ./2) .g(x,yj) (G5lb)

Coupling equations applicable to the upper boundary face are changed from the form given by equation
(G22) into the following expressions.

NU

Ojkm = exp(iXMx) j (t3 - AZm a:/2) fu (xi,yj) (G52a)

Oijk,,,- = exp(iXMx) (B3 + AZm a:/2) f, (x1,yj) (G52b)
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The boundary conditions to be satisfied on the outboard face are now defined as

O c~ xp(iXMxi) (On - Ay a:~/2) .f: (Xi,k) (G53a)

imIk=exp(iXMxi) 1;(l + Ay. ce4/2) .. / (x,,z) (G53b)

Afk
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APPENDIX H

EQUATIONS FOR THE EXTERNAL APPLIED POTENTIAL USING A LEAST SQUARES
APPROACH

The grid network is composed of (im)(jm)(km) grid stations. The boundaries that separate exterior and
interior solution regions are located between the first two and last two grid stations of each coordinate
axis; that is, the forward boundary is located halfway between the grid stations x, and x2; the aft
boundary is located halfway between x.m _ and x. ; the lower boundary is located between zI and z2; the
upper boundary is located between Zk._1 and zkm; and the outboard boundary is located between
yi -1 and Y ..

~ Boundary equations (G49a), (G50a), (G51b), (G52a), and (G53a) are used to eliminate the potential
equations of the finite differencing grid that are exterior of the boundaries. This results in (im - 2)(jm- 
2)(k. -2) potentials to be evaluated for the finite differencing grid. There are 2(NL+NR+NU+ND+NO)
parameters associated with the source and doublet distributions applied to the exterior boundary that
need to be evaluated. Potentials are specified for the interior finite differencing grid stations that are
directly adjacent to the boundaries, as indicated by equations (G49b), (G50b), (G51a), (G52b), and
(G53b), which make up a total number of equations indicated by 2(im - )(Jm -2) + 2(jm - 2)(km- 2) +
(in - 2)(k. - 2).

The global distributions of sources and doublets applied to the boundary exterior have strengths that
are determined using least-squares error procedures. For convenience, we define a new set of functions
that describes the boundary conditions of equations (G49b), G50b), (G51a), (G52b), and (G53b) in the
form

S '2k = OzJk + exp(AMa)N(clo, - Axlt/2)f.(YiZk)/K =0

n-I

ND
00, + exp(iXMx)Z(-03' + Aza"2) xj = 0

, , = - C "1 + exp(iXMx)Y,(0 + AZma:/2) f (x,,Y1) = 0
~n-I

4Oi,, = 'Om-lk + exp(iXMxi)Y(00 + Aya:/2)f. (X,,Zk) = 0 (Hi)

We now apply a least-squares approach to obtain the best approximation to the boundary conditions.
The stations used in the least-squares approximation are defined to be located at xt, yin, Zn and do not
necessarily coincide with the mesh grid points. The function to be minimized is developed by combining
the sums of the squares of equations (G39), (G41), (G43), (G45), (G47), and (HI). This leads to
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o(ay,,z,) + #0 (a2,,,z.) + 42 -IC
M'n mn fn

+ 2 1P(X,pC2) +'10 + M 2

ftm t.n i-2 k-2

j 1 k 1 4' -
1

m 
1

+ t ±(02 + 02jm"J + (02m- + ¢j = 0 (H2)
j-2 k-2 i-2 j-2

The function F(a,fl) is minimized by equating the partial derivatives with respect to a and 0 to zero. The
number of equations developed within this procedure is 2(NL+NR+ND+NU+NO), which provides for a
system of equations that is determinate.

The variables are numbered for purposes of computation. A single variable, a,, is designated to repre-
sent both source and doublet parameters.

Thus for source parameters a, we have the following a to a, correspondence.

ct,; for n = I to NL ak; for k = lI to NL

a'; for n = ltoNR ok; for k = NL+ ltoNL+ NR

da,;forn = ItoND ak;fork = NL + NR + ltoNL+ NR+ND

a,;forn = I toNU k;fork = NL + NR + ND + I toNL + NR +ND +NU

a.;forn = ItoNO ak;fork = NL + NR + ND + NU + I toNS (H3)

For the doublet parameters 0, we have the 0 to ak relationship designated as

•.;for n = I to NL o,; fork = NS + I to NS + NL

0';forn = I toNR ak;fork = NS + NL + I toNS + NL + NR

gd;forn = I toND k;fork = NS + NL + NR + I toNS + NL + NR + ND

,;forn = ItoNU ak;fork = NS+ NL + NR + ND + ItoNS + NL + ND + NR + NU

8;for n = I to NO ak; for k = NS + NL + NR + ND + NU + I to 2NS (H4)

Interior potentials of equations (G39), (G41), (G43), (G45), and (G47) are put in a more compact form
associated with new coefficients defined in the following equation set.

140



INS

0,a~~)= 7k ak(Y,Z) + 0.(a1,y,z)
k-I

2NS

0 (a2,Y,Z) = Yak a~k(y,z) + 0.(a2,y,z)
k-I

2NS

0,XVC)= J~a a3k(XIY) + OW(XIYIC1 )
k-I

4',(XI.VIC2) = 7,0k a4k(XIy) + 4'.(XIYIc,)
k-I

4'0(x,b2,Z) = Ik aSk(X,Z) + 0P.(x,b2,z) (H5)
k-I

The arrays alk,a~k,aik,a~k, and ask, are defined in terms of the source and doublet integrals by the chart

in Appendix I.

The equation set of (Hi) is also revised to shorten the notation by letting

nl =n; n2 =NL +n; 03= NL +NR+ n

Mn= NL +NR +ND +n; n5 =NL +NR +ND +NU +n

03 = x,/2; c4 = ALx../ 2; c5 = AzI/2

c6 = zm/2; 07 = Ay,,,/ 2  (H6)

Thus the equations of (Hi) are redefined as

N-I

OiIk = - i2-jk + x expa(ci oNSEZ;flI n + c~a2)f " Yj,zk)/K

R1

ND

107J = - O2+ eXP(iXMXd)Z(-CNS+, 3 + a,3fXI)

Nu

ljjkm -I = -*ikmW + exp(iXMxj)j;(UNS + 4 + C6a. 4) f" (X,,yi)

No

Okijik = ijm,,1k + exp(iX 1;)(aNs+ls + C7an5)f (,,k (H7)
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Equation (H2) is separated into two parts for convenience in taking the respective derivatives.. Equation
(H2) is redefined as

F(a) = FI(a) + F2(a)

where Fl(o) represents the sum of the squares of the terms that vanish on the interior of the grid
boundary; that is,

F1 (a) 7 ,4o(al,y,,zn) + FVo(a2,Ym,Z.)
nis'# m Jn

+ 0#(XtYmCi) + j;0(XtYmC 2) + j;t'2(x,b2 Z") (8
f~m f~m fM

And F2(o) represents the sum of the squares of the terms that provide continuity between inner and
outer potentials at the boundary of the grid; that is,

F2(a) I t r + - 2

j-2 k-2

+ jPkM-I + 02)+ YJ k ijimlk (119)
i-2 j-2 1=2 k-2

nMinimization of F(o) is accomplished by equating the partial derivatives of F(o) with respect to ok to zero
using the definition

1 - = I + 1 -z = o (H1O)
2 aak. 2 aak. 2 aak.

The first term becomes

1 aFI = 4#o(aym,zn) aOo(al,ym,z)/aak,

2 auk,  .

+ jiko(a2I,ym,z) 8ao(a2,Ym,Zn)/8 0k'
m'n

+ Yo(X,,y,ci) a~o(xjy ,c)/a7k'

" j1ko(XYm,C2) 81k(XaYi,CP/8ak'

+ 7, 0o(xt,b 2,z,) a4p(x,b 2,zn)/aak. (HI)
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nAru

Substituting the expressions of (H15) into (HIl1) yields

2yok _l~.,. + 'Pw(aiYmZn,)1 alk'&m.,Zn)
2 aak' mn k-1

+ [ JGk ak(ym,zn) + 'Pw(a2lYmIZn)] a'2k.&mzn)}

* k-1

INS~~ ~(,,~ CW(x,,z.,)] ak'X,.) (12

I.n k-

2 [ ak ak(Xtz~ l'ymZ + 5XIMC)Iak(1k-1

+ 1; [ &p1NZfl a(X&,) + a3l,,,,) a~k'(X m)(H2

Equation~~~ (H2 is(tm rearrangyed +nto afomdingcefces oxf, as follows.)

+ Z a~tw(Gym,z) akym,zf) + alk(a,ym~z) av.'(ymz)]
,n.n

+ 1: a'kwXl)k'(~Y.IGX,Y) + 1I'w(Xtf.) k(XfY)}

+ Ow'P(xl,b 2,zn) a5k'(XtZ) (H113)
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The derivative of F 2 with respect to ak , is given by

1 -F 1 k -I kZ/ak+

2 aak. t.+iIjk NWIm kkJ

+ ~'[#ijki-I 8 #ijkmri/ 8 'k' + 1kjJ2aiiflaak~]
i-2 j-2

+ t 2;Pij,-Ik aOimiklaak'

"-2 k-2 (H14)

We insert the expression for k2jk that is contained in equation (H7) to obtain the derivatives with respect
to ak. for - k' :s NL given by

1 8F2 =Xa.
"t , exp(iXMa,) :Vk + exp(iXMa,)

j-2 Ik-2

-cA]) f'(Yj,Zk)/K c f,, (yjzk)/K (H15)

These derivatives now define new terms,

CwIjk. = exp(iXMal) f (Yj,Zk)/K

(H16)

=ir ' t k W~i k CWljkr
j-2 k-2

which are inserted into (H15) to provide the shortened expression

1 F, j - 1j kl -1 NL- H)
2 ak' j-2 k-2 M-1c~~n~3u, n

Equations applicable to the aft boundary face and numbering between k' = NL+1 and k' = NL+NR
are given by

I F2  j -1 k-I NR 4

2 = k m [--4Ijk + exp(iXMa 2)I (L2LNS+..2 ) -2 k-2 n-I

+ c40. 2)f' yJV,Zk)/K] c4 exp(iXMa 2) f'-NL (yj,zk)/K (H18)
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I~ffJ JL~rJRNK~JWS

~ With

cwj,= exp(iXMa2) f;.(yj,Zk)/K(H)

W2.,r iI t~ CPV~kn CWkr
j-2 k-2

we obtain the shortened expressions

I =F _ C4 t t ~ C~fk,k.NL OimiIjk
2 allk' j-

2  
k-2

SR

+ C4E l + C4a,2) W~~'N (H20)

The source derivative equations applicable to the lower surface and ranging in number between
k' NL+NR+l and k' = NL+NR+ND are given by

1 F, 'i -1 [j - epX1 ND dN~n +X~~ x~Xx~sjjj (H21)002+ep~Xx)F ( - aN+3+C 5 On3 )f'(iY) x-Xx)~~x,~
2 aak -Ij) -

With w~ij exp(iXM x,) f~ (xy)

(H21a)

W 3,nr = C*j, C;,,

we obtain the expressions in reduced form as

i IjMIND

2 5tE W3ijn' Ot/I + 5 ( - ONS+n3 + C5170) W3,,, (H22)
2 allk' r-2 j-

2  
n-I

'3*no(wheren' k' -NL - NR.

Equations pertaining to the derivatives of the source terms that number from k' =NL +NR +ND + 1 to
k=NL+NR-tND+NU are given by

I ~F = ~~IjI +exp~xivx~iNU

2 & ~ -2 j2 ~lkm~ 2 (NS~f4 + ~a~4 fU (Xiyj)] c6 exp(iXMxi) fnu (x,,yj) (H23)
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where n' = k'- NL- NR- ND

and
Cw~ij,= exp(iXMx)f, (xjyi)

(H24)

W4nr = M CW4ijn CW4ijr

i-2 j-2

Thus we obtain

1 CF2  - C6 Cw4,,,n Oijk_ ! + C6 NI (NS+n4 + C60rn4) W4,'
2 ak' i-2 j-2 n "o)(

where again n' = k' - NL - NR - ND.

We then come to the equations of the source derivatives applicable to the outboard boundary and
ranging in number between k' = NL+NR+ND+NU+1 and k' = NL+NR+ND+NU+NO=NS, which S

are obtained from (H14) and use the definition for ijm- 1k of equation (H7):

I 'F2  k l 1 
NO

2 aak' Z t [ - Oijy-k + exp(iXMx 1) 7, (aNs+, ,5
i-2 k-2

+ C70. 5) fon (Xi,Zk)1 C7 exp(iXMxi) fXi Zk (H26)

With

Cwnik = exp(iXr): c, kr
(H27)

i -1 kj fI

= nr CW~ikn CW~ikr
i-2 k-2

we obtain the expressions

- C Cwsikn' 'Oimw-k ,
2 ak' ,-2 k-2

+ C7 (ONS+n + C-an5) W5 nn (H28)

where n' k'- NL - NR - ND - NU.
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Derivatives of the F2 doublet terms with respect to ok' are obtained in a similar fashion. For the forward
face, the equations that range in number between k' = NS+1 and k' = NS+NL have been derived

Sfrom (H14) and (H7) and are given by

2 aakIk' CWlk,kNS2jk
2 8 0k' j- 2 

k-.2

NL

C (Cla'NS+nl - C3"nI) Wln,k'-NS (H29)

Equations applicable to the aft face are developed in a similar manner and range in number between
= NS+NL+1 and k'= NS + NL+NR. These equations are given by

I F 2  = - k m 9

___j= _ 2 1 CWj2k,, 'O~iljk
28 k' j-2 k-2

NR

+ C2 Z (C21NS+n2 + c4o 2) W2n (H30)
n-l

where n' = k' - NS- NL.

Equations developed for the lower face and ranging in number between k' NS+NL+NR+1 and
k= NS+NL+NR+ND are given by

1 aF ~m'j -m ND

'*li- _ i J + (O-NS ~ ) 3,,3 (H31)
',U.) 2 alk ,  i-2 j-2 n.,

where n' = k' - NS - NL - NR.

Equations applicable to the upper face and ranging in number between k' = NS+NL+NR+ND+1 and
'= NS+NL+NR+ND+NU are obtained in a similar fashion:

IM& J"FI NU

C""- - - Cwjj
' 4

ijk -I + Y (aNS+n4 + C6 Urn4) W 4nn' (H32)
2 aak' i. j-2 n-I

where n' = k'-NS-NL-NR-ND.

The final set of equations applicable to the outboard face and having equation numbers between
k'= NS+NL+NR+ND+NU+I and k' = 2NS is given as

I aF, I I km]- NO
- - ECWik,' ijm-Ik + (O'NS+'5 + C7 0, 5 ) W 5 ,'' (H33)

0"% 2 aa k ,  -2 k-2 n-

where n' = k'-NS-NL-NR-ND-NU.
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APPENDIX I

DEFINITION OF THE ank COEFFICIENTS

(Wo The ank coefficients that appear in the (H5) equation set are now defined in terms of the integrals of the
source and doublet global functions using equation (G34) and (G35).

The accumulated effect of all source and doublet distributions acting on the upstream grid boundary is
represented by alk. The total effect of all source and doublet distributions acting on the downstream
boundary is represented by a2k. The total effect on the lower boundary is a3k, a4k is the accumulated
effect on the upper boundary, and a5k is the total effect on the outboard boundary.

The number of global functions applied to the forward surface is NL source and NL doublet
distributions. There are NR source and doublet distributions applied to the downstream boundary. Also,
there are ND, NU, and NO distributions of sources and doublets applied to the lower, upper, and
outboard boundaries respectively. We construct a set of constants formed from various combinations of
applied distributions in order to shorten the notation used to identify a particular equation number.

That is, we define a set of acronyms to denote various combinations of the externally applied source and

doublet distributions as follows.

NL = NL

NLR =NL+NR

NLRD = NL + NR+ND

NLRDU = NL + NR + ND + NU

NS =NL+NR+ND+NU+NO

NSL = NS + NL

NSLR = NS + NL + NR

NSLRD = NS + NL + NR + ND

NSLRDU = NS + NL + NR + ND + NU

Also, we identify a new set of constants kn in order to shorten the notation used in identifying the index
number associated with the ank coefficients. These constants are identified as follows.

kO = k

k1 =k -NL

k2 = k- (NL + NR)
Sk3= k- (NL + NR +ND)

k4 = k- (NL + NR + ND + NU)

.- k5 = k- (NL + NR + ND + NU + NO)

= k- NS

k6 = k- (NS 4 NL)

k7 = k- (NS + NL + NR)

k8 = k- (NS + NL + NR +ND)

* k9=k- (NS +NL+ NR + ND + NU)

Definitions of the various constants and acronyms are included in the ank coefficients definitions listed
in Table 1 in terms of integrals of the applied source and doublet distributions.
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APPENDIX J

EVALUATION OF THE CONTRIBUTION FROM THE INFINITE WAKE

The potential induced by the wake extending beyond the finite difference box containing the wing is
given by

(xyz) Y exp(iwa2)A- 1(a2 ,Yj) dyl"

aexp( -iwAx') [8 1(x-x' ,yi-y,z1 -z1')/az;I dx' (0i)

where a2 is the x coordinate of the downstream face of the box. The jump in potential at the downstream
face is AOl(a 2 ,y). The fundamental solution is 01, given as

V1 = exp (-x(Ri + M(x'-x))) /R, (J2)

2  (XX,) 2 + (yl-yi)2 + (ZI _ZD)2with R1

X = WM/(l-M 2)

The subscript 1 denotes scaled variables; Yi = -K y, z, = -K z.

The above definitions are then inserted into the infinite integral to produce

= 0 exp(-iw(x'-x)) exp(-A(R, + M(x' -x))) /Rdx' (J3)I. a2

where an extra exponential is added to provide for a single definition of the dummy variable (x' - x).

J.1 EVALUATION OF THE FLOWWISE INFINITE INTEGRAL

Numerical evaluation of equation (J3) is very difficult. The derivation of the procedure presented
here for its evaluation begins by rewriting (J3) as

L'.'' ar ° ° eXp(- -Af(R I - M(x, - xl'))
I w = exp(- iw(x - a2)) - exp(iw(x - a2)) eZp(a2  R, dx

'3Z a2

A transformation of the form r = (x, - x i) is applied to (J3), which results in the expression

I, = exp( - iw(x I - a2)) ) exp(hor) exp(iA(r2 + ro) 1 2 
- Mr))d R04)

a-i (Z 1 x- a2)R

where r2 
= (yl-y )2 + (ZI-Zi) 2 )
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The exponentials are combined and a transformation of the form r = -,r is applied to produce the
expression

0 0 exp(- i" (7 + Mr2 + r2)/ 2))
= expk-iw(xi -a 2)) - (0 d7 (J5)

Z - (X - a 2 ) ( 02 +r2)1/ 2  MY

where (W = X/M

Equation (J5) is then separated into two parts as given by

1. = exp(-iw(xl - a2))e 2
/

2  )
az; o (72 + r2)12

+ -x-a2 exp(i( ( - M(72 + r ) 1/2) d] (J6)UZ 0Zl (r2 + r'.) 1/2

where a transformation of the form r = --r has been applied to the finite limit integral.

The two integrals given in (J6) are identical with the integrals used to evaluate the downwash at a
field point (x,y) in the z = 0 plane of subsonic lifting surface theory in reference 7, with the exception
that a double derivative

a2 1
aziaz'

is applied to each of the integrals instead of applying a single derivative as indicated in (J6).

The final expression developed for the kernel of the potential function is identically equal to the
kernel of the downwash integral multiplied by zl. That is, the wake integral is given by

, = * exp(-iw(x,- a2)) * rK,(e)+i2 (I,(a) - LI(a))]

ia + -l (X -a,2) exp i'( (xa 2)_M((x 2+a2 )+r2)]

ro r> 2 + r) o

ic ((x, - a2) - M((X- a2) + r2)/ 2)r/ l +r2)1/2
+ o/(1 + i)'/

2 
* exp(iwro /3) dir,

r0 o 0

where a - wro/1 (J7)

The finite limit integral may be reduced to a closed form expression by applying the approximation of
i/(1 + r2 ) /2 that is given in reference 12.
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To perform the integration in equation (J7) we consider

rO d/'l+r (J8)

where T = x,- a2 - M/(x,-a ) + 1r. = Oro/o (J9)

Following reference (12), we approximate the integrand by

/-VT-?- = I - cie -' - c2e
- " - c3e

-' sin(lrr) (J1O)

where C 1 = 0.101, C2 = 0.899, C3 = 0.09480933, a = 0.329, b = 1.4067, and c 2.90

The upper limit may take on negative values. For this case we must introduce a new variable t -T

before using the approximation in equation (J10). For the case (x - a) > MrJl3, we have
{ Tri d/ IT

T eA" d7 / = [e-7--ce(ia-a) _c2e(- b)-c 3e('I-c)sin(i) di
0 o

(eLG 1)l(ia) - c, (e(ia - a)T - )/(ia _ a) - c 2(e(i. - b) _)/(ia - b)

C3 [ e(i"c)T [(ia-c) sin (iT)- ircos(wr)] +}/ [7r2 + (i,-c)2] (J12)

For (x - a) < MrJI3, we write

To ,d= Idi 
(J13)

O 71+T2 0 71 +r 2

We see that this is the same as the left hand side of (J12) with a replaced by -a.

.0
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J.2 SPANWISE INTEGRATION OF THE WAKE INTEGRAND

The potential induced by the wake as defined by equation (J1) can now be expressed in terms of I.

w(xylZ 1 -Zj) = (1/4,r) exp(iwa2) 01(a2,yf,) dy

"exp(- iwx) a2eXp(- iw(x'-x))l.(80,(x-x',y1 -yi,zl -zl')/Sz,)dx' (J14)

This integral is modified by assuming symmetry about the planform centerline (y' = o) and takes the
form 

Y
0,(x,y1 ,z1 -zf) = (1/4w) exp(ioa 2)4 0 1(a2 ,Y ) dyf

*exp(- iwx) la exp(-:W(x' -x)) -(a0J~(x-x',Yi -yf'z 1 -zJ)/aZJ

+ O01(X-X',Y1 +Y1,Z 1 - Z )/z) &' (J15)

The infinite integral of equation (J14) has the functional form

I,(,y -y i,z -zzD  = I ,.

The second part of equation (J15) has the functional form

I.(x'yi+yi'zi - z =

Thus equation (U15) takes the form

'Y10.(x,Y1,Z1 - Z1) = exp( - ix)/4wr exp(iwa2)A01(a2,Y1') (-++ d' U6

0

The jump in potential at the downstream face of the grid network may be expressed in terms of the jump
in potential at the trailing edge of the wing.

That is, a10(a 2 ,Yf) = A~i! + Of) " exp(iw(x 1 . - a2)) (J17)

Integration in the spanwise direction is replaced by a finite sum integration procedure that makes use
of trapezoidal integration techniques that yield

0.(X'y 1,Z, - z() exp(- W&x - iw(x - x,,) [ai i(- +
J= 2

+ A'O4 + I,+ (Iw'+ I + I+j+)} (yl+ I - y1y)/8r (J18)
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where 0 is related to 0w by

= exp(iAMx). (J19)

Note that the spanwise grid has been devised such that the wingtip is located at the midstation between

the grid stations defined by yj 1 and yj1 , 1. The potential jump exists only along the trailing edge up to

the tip of the wing. Thus the summation indicated in equation (J18) is revised into the following form.

0.b(xyZi - zl') = exp(-iXx/M + iwxi+ 1) " [Ai +I J,2(I.2 + Iw+2) (Y1,-yl.,)/8'

+ Aoil+l (Ij + I+) Cylj+I-Ylj- )/87
j-

3

+ A4b, +1 jS5 (Ij 5 1 + I ji) (y ,+I+yjSJ -2y 3jl.-.)/16} (J20)

The z = 0 wing plane lies within the same plane that contains the wake; consequently zi - 0.

The wake expression is then defined for stations at
~x = x1; yi = Yy,; and z1 = Zlk

by the expression

Vwik J, ),, WAK,,Ar U21)
1-2

S where for I = 2 (midspan station)

WAK2ik = exp(- iXx,/M + iwxi, + 1)

• wY -- , ,lk) t- Iw(XI,YIj+Y,2,ZIk)) (yl, 3 -yl, 2)/8ir (J22A)

S For f = f (the general integration station)

WAKe1k = exp( - iXxi/M + iwxi + )

.(I.(x0Yi 1 YI y,,Zlk) + Iw(Xi,YI+YIe,ZIk)) (.yv, + Yl- )/8r (J22B)

S For f = is, (the station next to the wingtip),

WAKjslijk =exp(- iXxi/M + iw x,+)

•(I4(xyl1 -Y 1 l',Zl) + I(x,yIi+YIJsZak))

(Ylj| + I - 2Yjsl - 1)/1 6w (J22C)
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The trapezoidal rule of integration proved inadequate and Legendre integration was applied with
special treatment of the singularity. However, the basic form of equation (J22) still holds.

Because of the singularity in the integrand for points near the wake plane z = 0, special care must
be applied to obtain sufficient accuracy in evaluating the wake integral. The jump in potential at the
first point downstream of the trailing edge is determined to satisfy the Kutta condition.

The quantity

is therefore given in terms of the potentials

O il - ljkm-I I oil - likm  Oil - ljkm+ I ' Oil - lkm+ 2 ,

Oilijkm - I t Oiljkm , iljk, + I , 'Oiljkm + 2 ,

whose coefficients must be calculated in the construction of the matrix.

Consider a point YB lying between the plane of symmetry and the wing tip. We assume

YA < YB < Yj +,

In the range of integration y = 0 to y = yj the integrand is smooth and we apply Legendre
integration. This is also true of the range YJc+ I to YT, In the range YJc to YJc + 1, we make the integrand
regular by subtracting a singular term which can be added to the result in a closed form integral.

To apply the Legendre quadrature formula we must evaluate the integrand at points YN, N = 1 to
NLEG, which cover the span of integration. For this purpose we need the values of AO at the spanwise
points YN. Since AO is only defined at the points y we must use a Lagrange interpolation polynomial.
For each YN, we determine a J(N) such that

y(J(N)) < YN < y(J(N) + 1)

Then the value of AO at y = YN is given by

•AO(Xil + IYN) = AO(Xi1 + IYJ(N--I) * GLI (YN,J(N))

+ AO(Xi1 + i) YJ(N)) * GL2(YN,J(N))

+ AO(Xi + I'YJ(N)+ 1) * GL3(YN,J(N)) (J23)

where
7~

GL1 (y,J) = (y-y,) (y-yj+l) /[( YJ-I-Y) (Y1-I-Y,+ 1)]

GL2 (y,J) = (y-y-)(y-y + +/ [((Yj-Yp..)(Yr-Yj+)1

GL3(y,J) = (y-yj_ (y-yJ) /[(yj+I-yji- )/ (yj+I-y)] (J24)
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The integral we are evaluating is given in equation (J16) which is modified to be

4w(XyBsz) = exp [-i (Xx/M- x,+ j ,] T A-01 (x 1 +. ,y')(I w + I + ) dy'/41r (J25)

Here we have applied equations (J17) and (J19). The portion of this integral for 0 to yjc_ 1, then, is given
by

y exp 0 i+ [I + )1 NLEG (X+,YN) [ (YN) + I + (YN)IWT (N) * (yjc- - 0) (J26)

N- I

where WT(N) are the Legendre weight coefficients. The quantities A are replaced by equation (J23) to
yield

[_iX/ _ i +1]NLEG

exp [, - [xM-cxi ) AO(xi + I'Yd(N)-I)GLI(YN,J(N))

N-I

+ A(Xi1 + IYJ(N)) GL2 (YN,J(N))

+ AO(X +,,yj(N)+1)GL3 (YN,J(N))I[IW (yN) + I + (YN)] WT(N)yj _] (J27)

To construct the coefficients of the matrix we need the coefficients of AO (x, + 1,yj). For] = J (N) -1,

we have

exp [ -i(Xx/M-Ix 1 +,)]*GL1 (yN,(N))*[I;(YN)+I + (yN)IWT(N)yjc ,  (J28)

Forj = J (N), we have

exp [-i(Xx/M- x+, )]*GL2(yN,(N))*[I;(yN) + IW+(YN)] WT(N)yj_ (J29)

and for j = J (N) + 1, we have

exp [ - i(Xx/M - x, +)*GL3(yN,J(N)) * I (YN) + IW+ (YM)] WT(N)Yjc- (J30)

For some values of j, there may be more than one contribution from the numerical integration; hence

these contributions must be summed to obtain the wake terms

WAK1, WAK2, WAK3, WAK4, and WAK5

~ defined in equation (J21) for 0 on the 5 planar boundaries of the grid.

The integration from yjc + 1 to YT is performed in the same manner. For the singular integral yjc- I to

yj 1, the integrand I- + I+ is first evaluated at y = YB, the singular point. Then we compute a

constant
Iwo r 2 (1 + I+)

0150
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m

where r! = Ki2. For the numerical integration we use the regular integrand

I- + I+ - I,,/(M)
W W r!

where, now, r2= K (y - yB) 2 + z2. The jump in potential is defined at the Legendre points YN lying in Vl
the interval yjc- I :s y syc by

+ 1, Y,) = A(Xi, 1 , Yic - 1) * GLI (YN, J)

+ A(x, + 1, Yjd* GL2(YN, Jd)

+ A(x, +1, yjc+ 1) * GL3(YN, Jd U32)

Thus for the closed form integral to be added to the integration of equation (J31) we must evaluate

YjC-I1

Since the numerical integration i9 performed in the scaled variables, the first integral becomes

I w o Yi C +- (y - y ) ( y - y ~, + ) -,'i K d y ) 2Yj (j yj)(yjcI -j, 1i+) K[(Y - YB)+

Let (Y -B~ IZ I= (Y1 - YB)' I Z of,, and Dj = yj - . Then the integral above reduces to

VK-Djc(Dj, + Dj, +1) a 1 1- (t2 +1)

Expanding the numerator and using the relation

tl1(j + t2) =1 -1/(1+ t2)

we obtain

IzI 1.0  0 F, (a1,+ a 1i, t Ch~,+Id

V'KDj,(Dj, + Lj, 1+t2 + a t d (J34)
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integration yields

Izi 1.0 aij+i - -1,_ (a1j + Cti + ) log I l+ J2, +I
-,[--Dj,(Dj + Dj,+ )L 1C 2 ( 1+41 /)

+ (aj CaC+-l)(tan-crjc+i - tan- ac 0] (J35)

The second integral becomes

1 Y1jc+ jJ, (Yj-Yj+I)RY-Y B)2+z3'y

Introducing the same variables yields

Integration then gives us

ClRD. 2 o I Cti - )
+ (acac- 1) (tan -'j+I- tan 'ajJ ()]J36)L

q~ Similarly, the third integral yields

I,, Y+ (a1 1 a C-1)(an' d dy

vrK- c Z21

Yj- Yc9YcCycYd~-Y)
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J.3 DETERMINATION OF THE POTENTIAL JUMP AT THE TRAILING EDGE

The required jump in potential necessary to satisfy smooth flow conditions at the trailing edge is
obtained from the derivation given by equation (37), page 46, of Reference 1. It is given in terms of the
potential jump on the wing by the expression

A40il+ Ij " (1 - d1i1/CI 1 - iw/C1 i )A-0y + (d1j/cli)A-0,- 1_ (J38)

or is written as

Aii+ ij = CkclAilJ + Ckc2Ail-lIj

where

Cli= (Xi-xi-)/ci ; Ci l/(Xi+1-Xi-l)(Xi+ 1-Xi)

d] = (xi+I-x)/d ; di 1/(x:+-x-,)(xi - x-)

The potential jump at the first differencing station downstream of the wing trailing edge is represented

by Aoil + 1. The potential jump at a point (iQ) on the wing is obtained from the derivation shown on page

66 of Reference 1 and has the form

AO& = Cs2'Oijkm_ - (1 + Cs2)(Aijkm + (1 + CsI)OLijkm l+

Cs10i4km+1 -(dsF(l + ds2Fi!) (J39)

where

CA= 1/4s(s] + 1) ; c,2 = l/4s2(s2 + 1)

d= h(2s, + 1)/4(s, + 1) ; d,2 = h(2s2 + l)/4(s2 +1)

S, = (Zk +2 - Zkr+l)/h ; S 2 = (Zkm - Zkm-1)/h

h = (Zkm+lI - Zk)

where F " and , are boundary conditions on the upper and lower surfaces.
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0 Thus the potential jump at the first station downstream of the trailing edge in the wake is given by

4Ol+ li = Ckc (C.52 'Oi, - li,jkm- I - ( + C2)Ol- ljkm + (0 + Cs~l- likm + I

-s~ lik + 2 - (dI j+ ,1 j

+ Ckcl(Cs2'Okk.- (1 + Cs,2)Oiki, + (1 + Csl)4JOik + I

CS,'fkjk+2 -(d 5 1F ' ) + d (J40)

where

4. ISCkc, = I - dli,/cl,- iw/cj

Ckc2 = llc,

The potential jump at the first finite differencing station downstream of the trailing edge is now defined
in terms of the Au coefficients described in the section on wake boundary conditions and takes the form

A =l+I A IOi -i,, -j I + A 120i -ki, + A10l-Ik,

+ A1'i- jkm,+2 + A21t,-,-k + A22Oiljk,, + A 230k, 1 k+l

+ A24'iljkm +2 - Cc2WJu$Ir I + d 2F(L) )

-Ckc I(ds IF ('i + d52j } U41)

Definition of the wake potential is finalized by inserting UJ41) into (J21).

J Afi lk I+ A12j4ii-lkm

Iwi WAf'4'kl Ifm4 M-'I"

+ A 1 f i - lek m + l + A 1 4f~ i - l k , 2 + A ~ f il k -

+ A22 0iltkm + A2filk~ + A24f~ilfk +2

% - ~Ckc2(dsl,.IF + s,2F(1 1 )2

- Ckc I(d 1F (U + (J) 42)
ilf d2F~l0
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Let RHS1 = Ck 2(dsFUIj + d, 2F(L) 1j + CkcI(dsIF.1 J - d 2FV'K 043)

In equation (J42), then

OPwijk I [A, ijc i'i Ijk, I + Aj2Jljcj1 j

" A3'i- Iickm,+ I + A, 4 jc~-'il 1jkem 2 + A 21 ~icik-

) " A22J.~lk. + A23jciij( ,,+ I + A24j, Oiijck + 2

- RHS1l] WAKjdiJk Q44)

JA4 INCORPORATION OF THE WAKE INTEGRAL INTO THE EQUATIONS FOR THE
s APPLIED SOURCE AND DOUBLET DISTRIBUTIONS

Substituting equations QJ44) into equation (H13) yields

181 ZNS
2 aF, a aW (k,r) + [AI IJI

+ A12jc~j1 - liekm + A, 3jcoil- ijckm 3 + AJ41 i - iJckm +2 q

+ A21j,",IjckmI + A2jolcm+ A231 Oljj~ +I + A24j4.fjjc.k+2

-RHS1 1 ,{ [air(ymazn) WAKjcimn + a2,(ym,zn) WAKicimax-in]
m.n

+ [a3 xy. WAKjjem, + a4r(Xe,ym,) WAKJ.Lmk]r

a,+ [a5,.x,Z,7 WAKc.jmax] QJ45)

Here, we defined the array W' (k,r) as follows:

W'(k,r) [alk Ia3 ra1  + a...na....

+ +

F,~ [a~fmarm + 4kema4fm] p.

+ a~jar QJ46)
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where alkmn =alk (i'm' z'), etc. Let

=A*, Z[WAKjimnairmn + WAKji'ma,,na2,mn]

M.'n
+ 1: [WAKj,1m,2t73rfm + WAjxmkmaxa4rfmJ

fn,

+ WAKjcjmnafn QJ47)

then equation UJ45) becomes

1 OF, 2Ns JSl

2 r Z ak W'(k,r) + 1: [AUjc'i - jckm-1 + Ai2j 46i1_- jCkm2Or k-1 jc=2

+ AI3jc1'i - iCkm+ I + AI4j c ijjk_ +2 + A2IjC 'kjJckm -1

+ A22Jtkljkk + A23j CiiCkm41 + A' 1 kilkm+ 2] WAJ? - RHSW(r) UJ48)

where

RHSW(r) = Z RHS1j WAJ? (J49)
j=2

The r th equation is actually given by

I aF1  OF,
"I- -- + -_ = -=0 (J50)

2 aa, 2 aa,

In this equation there are contributions to the coefficients of a in equation (J48) from 8F2/a, Thus, for
1 :s r :s NL, 1 <s n 5 INL, we have from equation (1117)

Iak W'(k,r) + Y, (WAKE 0 TERMS) - RHSW(r)
k-1 J=2 "p

)Max-] kmrI - 3 aN 1 (J1
% C3 1 :CW 1 jkr402jk - C3 (c, aNS+n C anWnr (51

1-2 k-2 n=1
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Hence for equations r =1 to NL, we drop the prime on W(k,r) and modify W according to

Wn= Wnr + C3 n= 1, NL

Wn +NS r Wn+NS r - ClC 3Wlnr (J52)

and the coefficients of 4a2jk for 2 < J :5 Jmax -1, 2 :s k :5 kmay - 1 are

- C3 CWIjkr (J53)

We now follow the shortened notation in equation (H6). Thus for 1 s r _< NR, and 1 _5 n z NR and
for equations NL + r, we have, according to equation (H20). .

Wn, r+N = Wn 2 r+NL + c4W2. "

Wi?2 +NS r+NL = Wn2+NS r+NL + ezC4W 2nr (J54)

and the coefficients 0ima-Ijk for 2 _5 j _5 Jmax -1, 2 _s k -< kmax -1 are

- C4 C W2jkr (J55)

For equations NLR + r and for 1 < r _5 ND we modify W according to equation (H23) and obtain .

Wn3 NLR+r = Wn 3 NLR+r + C2W 3nr

Wn 3 +NS NLR+r = Wn 3 +NS NLR+r - C5W3nr (J56)

and the coefficients of are

-C 5 Cw 3 ijr (J57)

For equations NIRD + r and for 1 :s r _ NU, 1 _5 n _5 NU, we have from equation (H25)

Wn4 NRD+ r Wn4 NLRD + r + C 2W4nr

Wn4+NS NRD + = Wn4+NS NLRD+r + C6W4nr (J58)

and the coefficients of OiJkra x - I are

C6 CW4ijr (J59) %
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For equations NLRDU + r and for 1 :5 r 5 NO, 1 s n :s NO, we have from equation (H28)

Wn 5 NLRDU+r = Wn 5 NLRDU + C2WSnr

WnS+NS NLRDU+r Wn5 +NS NLRDU+r + C7W~nr (J60)

and the coefficients of OijMax - Ik are

- C7 CW5ikr (J61)

For equations NS + r and for 1 < r < NL, 1 < n < NL, we have from equation (H29)

Wn NS+r Wn NS+r - CIC3WInr

@

Wn+NSNS+r -Wn+NSNS+r + C1WInr (J62)

and the coefficients of 02jk are

C1 CWljkr (J63)

For equations NS + NL + r and for 1 < r < NR, 1 < n s NR, equation (H30) yields

Wn+NL NSL+r Wn+NL NSL+r + 2c4W 2nr

Wn2+NSNSL+r - Wn2+NSNSL+r + C2W 2 nr (J64) -

and the coefficients of oimaxlJk are

- t2CW2jkr U65)

For equations NSLR+r and for 1 s r s ND, 1 s n s ND, equation (H31) leads to

W=3 NSLR'+r = W,-3 NSLR+r C5W3nr

Wn3+NS NSLR+r -Wn3+NS NSLR+r + W3nr (J66)

and the coefficients of 0i2 are

Cw3ijr (J67)

For equations NSLRD + r and for 1 :5 r < NU, 1 <_ n :s NU, equation (H32) leads to

Wn4 NSLRD + r = Wn4 NSLRD + r + C6W4nr

Ant Wn4 + NS NSLRD + r - Wn4 + NS NSLRD+r + JW4nr  68)
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and the coefficients of OiJka- 1 are

- CW4ijr (J69)

Finally for equations NSLRU + r and for 1 == r -- NO, 1 n :5 NO, equations (H33) gives us

Wpn5 NS NSLRDU + r = Wpn 5 NSLRDU + r + C7 W 5 nr

WlS + NS NSLRDU +r = WflS+ NS NSLRDU +r + W~flr UJ70)

and the coefficients of Oijmax-lk are

CWSikr (J71)

Equations (J46), (J47), and (J52) through (J71) are computed in the program by the subroutine

labeled WMATRX.

IN I,

x"I-
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APPENDIX K

INTEGRATION OF SOURCE DISTRIBUTIONS FOR RECEIVING POINTS IN THE PLANE
OF INTEGRATION

When we integrate the influence of a source distribution on itself, we have to treat the integration
separately because of the 1/r singularity. It is possible to eliminate this singularity by introducing polar
coordinates about the point where the influence is to be calculated. For a source distribution of the form
x' y", the integral to be evaluated takes the form 0

y"1 7 exp (-Atr) d~d,/4-rr (KI)
YI X1

where r2 = (x - )2 + (y - 17)2. Introduction of polar coordinates about = x, ) = y yields integrals of the
form

02(y -y)/cos6

0  / (x-rsinO) (y +r cosO)' exp (,-r) drdO (K2)

Integration with respect to r leads to four line integrals along the edges of the rectangle that must be
evaluated numerically. This procedure turned out to be too costly so a simpler method was derived.

Equation (K1) can be expressed in a more convenient form by a translation of the coordinates. Thus
we have

SI-Yy x-x Q +x)m (,+ y)n exp (_ x ,' ) d~d (K3) %

Expanding the numerator and retaining the first order terms in t and 17 yields

Y2-Y X2 -X [x" + mxm-'y + nXYf-11 + .... ] dtd (K4)
yj-y x-x r

where r2 now is .2 + .This can be integrated in closed form. When the integrand of equation (K4) is
subtracted from equation (K3), the resulting integral is nonsingular and can be integrated numerically.
Adding the closed form integration of equation (K4) then leads to an accurate way of integrating equa-
tion (KI). Thus we integrate numerically the integral

[( +x) m (7 + y)n exp (- -Ar) - xiy' -mx"'
- y" - nxy"- - Id~d/r -,

y -y x 1-x (K5)

and add the closed form integration of equation (K4).
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By integration by parts we obtain

= 7 1og( + r) + 1I og(7 + r)- -

= FI (.,) (K6)

Also we have,

d d" = rd ,7 = iir/2 + (t 2 /2) log(17+r)

= F2 (.7) (K7)

Similarly,

S7dtdq = tir + 2 log Q + r)
r 2 2

= F 2 ( (K8)

Applying the integration limits of equation (K4) yields for the closed form solution

xmyn [ F, ( 2 -x, Y2 -y) - F, (xi -x, y 2-y)

-F, (x2 -x, y1 -y) + F, (x-x, y--y)]

+ mx"-'y" I F 2 (x2-x, Y2-Y) - F2 (xI -x Y2-Y)

- F2 (x2 -x, yI -y) + F 2 (XI -X, YI--Y)

+nx"Y-'[F2 (YV2-Y, x2-x) - F2 (Y2-YI , x-x) %

-F 2 (y-y, x 2 -x) + F 2 (y-y, x 1 -x)] (K9) '

Since the integrand of equation (K5) goes rapidly to zero at = = 0, the range of integration is

divided into four rectangles by the lines = 0 and i/ 0. The Legendre integration formulas are applied

to each rectangle.
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APPENDIX L

Q CONTRIBUTIONS OF THE SOURCES AND DOUBLETS OF THE EXTERIOR SOLUTION
TO THE MESH BOUNDARY CONDITIONS IN THE FINITE DIFFERENCE EQUATIONS

We now change notation to a more convenient form. For the source and doublet distributions in

S Appendix F, we choose the following: 
-+ia

b2-*YJ. Cl-Z 1  C2'Zkm_

For the upstream boundary plane and 1:s n :s NL,

a a InAl (y, z) (i

A 4, (y,z) (L2)

For the downstream boundary plane and 1:s n :s NR,

a a. o , (y,z) (L3)

- jf ,z) (L4)

For the lower boundary plane and 1:s n :5 ND,

d - n f '(Xy) an(L5)

A m Af,(X,y) (L6)

For the upper boundary plane and 1 s n :s NU,

a - a nflu(x~y) (L7)

A- 14nfu xy (L8)

For the outboard plane and 1:s n :5 NO,

a a- afO, (x,z) (L9)

A- n 4fo (x,Z) (L10)
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Using equations (G49a), (G50a), (G51b), (G52a), and (G53a) and then applying the ordering of the
parameters of Appendix I, we obtain for the exterior boundary conditions of the mesh

NL
0Ijk = -exp ( iXiMxI) I [ CaNS+n + (Ax1/2) a, If' (yj' zk)/K(Lii)

n-1

Oimaxjk = exp (iX1 Mximax) [¢2aNS+NL+n - (AXm/2) aNL+nj fV j.,Zk)/K (L12)

ND
oi,= exp( iMXi) Y -N+L~ ~ 1 2 ~~nf'x~j (L13)

NU

Oijkmax = exp (iXIMxi) X [NS+NLRD+n + (AZm/ 2 ) aNLRD+n] f (xiy) (Li4) 4.'. %.

'Oijmaxk = exp ( ix iMXi) IONS+ NLRDU+n + (Aym 2) aNLRDU+,] fn (XiZk) (L15)
n=1

where NLR = NL + NR, NLRD = NL + NR + ND, and similarly for the other terms. We also define
NS = NL + NR + ND + NU + NO.

We now apply these boundary conditions to the finite difference equations along the boundary of the 0
mesh. We begin by rewriting equations (E6) and (E7) in a general form for programming as

DIAG (K) * Oijk + SUB(K) * Oijk-I + SUPER(K) * ik+I + CIN(K) * - -k

+ COUT (K) * ,ij+,k + CFOR2 (K) * Oi=2 jk + CFOR (K) * Oi_ jk + CAFT (K) *i+ jk

+ RHS (K) = 0

For the upstream boundary, i = 2, -

CFOR(K) * okjk must be replaced by

- CFOR(K) * exp (iXMxi) [ N, Ns+, , + (Ax,/2) a.,] f, y,,zk) /K

From equation (H16) this becomes
NL ,

-CFOR(K)* [e aNS+n + C30n] CWlj.kn (L16)

where c3 = Ax,/2 and then CFOR(K) must be set to zero.
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For i =im, - l and allj, k, we note that

CAFT (K) * im k jk .0
must be replaced by

NR AxM N+)r(i,)K
CAFT(K) * exp (/AIMXimax) (

C2 aNS+NL+nf (yZk) /K

Using equation (H19) with c4 = Ax- leads to
2

CAFT(K) * (c2 aNS + L+n-C40NL+ n) C .kn (L17)
n-I

and then CAFT (K) is set to zero.

Similarly, for k = 2 and all i, j, we have

SUB(2) * kji replaced by
(XNi)ND AZ1

-SUB(2)*exp (iXZMx) (ONS+ NLR+ + --- NLR+,(x,,yy)

Using equations (H21a) with c. = AzI/2 leads to

ND

-SUB(2)*Z (7NS+NLR+n +C 5 ONJ4R+f) Cti (L18)
n-I

., and SUB(2) is set to zero.

For k =kma. - I and all i, j, we have

SUPER (KMAX1) * ijkma replaced by
Nu

SUPER (KMAX1) * exp (iXjvhM ,, (aNS LD+f - aLRD+f)ff (xAYZ) (L19) --

Using equation (H24) with C6 = Az,, /2 yields for equation (L19)

NU

SUPER (KMAX1) 1(aNS+NLRD+f -- C60NLRD+n) Cw4pi (L20)

and SUPER (KMAX1) is set to zero. I.
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Forj I I -and all i,k,

COUT (K) * OJmaxk is replaced by

NO 
yCOUT (K) * exp (')-A1MX,) Y (ONS+NLRDU+fl - OmNLRD+n)f, XZk

Using equation (H27) with c7 = Az1/2 leads to

GOUT (K Z(NS + N]JDU + - NRU+n CWsikn (L21)

and COUT(K) is set to zero.
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